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Abstract  

 

This study investigates the development and application of a neural network (NN) model to 

predict hardness characteristics in Cr-Mo steel welded joints, utilizing the SPSS software suite. 

The model incorporates four key welding parameters; material thickness, welding current, the 

number of weld passes, and electrode diameter as inputs, with hardness values in the weld zone 

(WZ) and heat-affected zone (HAZ) as outputs. The neural network features a single hidden 

layer with eight neurons, using the Softmax activation function for non-linear regression tasks. 

A comprehensive dataset comprising 18 combinations of the input parameters was employed to 

train, validate, and test the model, ensuring it could generalize across diverse welding 

conditions. Results demonstrate the model’s high predictive accuracy, particularly in the HAZ, 

where an R² value of 0.997 and a low Mean Squared Error (MSE) of 0.94 indicate minimal 

prediction error. The analysis also reveals that material thickness is the most influential 

parameter, significantly affecting hardness outcomes, while welding current, number of weld 

passes, and electrode diameter play secondary roles. However, the model's performance varies 

between zones, with greater dispersion observed in the HAZ, suggesting complexities in 

predicting hardness due to microstructural changes in this region. Overall, the study confirms 

that the SPSS-developed neural network is a robust tool for predicting hardness in welded 

joints, offering valuable insights for optimizing welding parameters to achieve desired 

mechanical properties. This approach can reduce the need for extensive physical 

experimentation, streamlining the welding process in industrial applications. 

 

Keywords: Cr-Mo steel bar, welding parameters, weld joint, hardness prediction, neural 

network 

 

 

Introduction 
 

The accurate prediction of hardness in welded joints is crucial for ensuring structural integrity 

in high-stress environments, such as power plants, petrochemical facilities, and aerospace 

applications, where components are frequently exposed to high temperatures and cyclic loading. 

Chromium-Molybdenum (Cr-Mo) steels are widely utilized in these settings due to their superior 

strength, thermal resistance, and durability. Ensuring the mechanical properties of welded Cr-Mo 

components, particularly hardness, is essential for safety and optimal performance. Traditional 

hardness prediction methods rely heavily on physical testing and empirical correlations that, 

while effective, are costly, time-consuming, and often less adaptable to complex or non-linear 

parameter interactions present in real-world welding processes. 

In recent years, machine learning, and specifically neural network models, have gained 

traction in materials science as powerful tools for predicting material properties by capturing 

intricate relationships between process parameters and resulting characteristics. For instance, 

studies in the last three years have demonstrated the effectiveness of neural networks in predicting 
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mechanical properties of various steels based on welding parameters. These studies underscore 

neural networks’ ability to handle non-linear interactions in welding processes, offering improved 

accuracy and computational efficiency compared to traditional statistical methods and empirical 

models [1, 2]. 

However, existing research on hardness prediction in Cr-Mo steel joints is limited in its 

consideration of Tungsten Inert Gas (TIG) welding, particularly in studies that analyse hardness 

distribution in both the weld zone (WZ) and the heat-affected zone (HAZ). Recent studies using 

neural networks for predicting weld properties have primarily focused on alternative steels and 

welding techniques, leaving a gap in predictive modelling for TIG-welded Cr-Mo steel joints. 

Furthermore, most studies emphasize a single-zone analysis, overlooking the varying hardness 

profiles across different weld zones due to heat input variations and material microstructure 

changes [3, 4]. 

To address these gaps, the present study proposes a neural network model developed in SPSS 

to predict hardness in TIG-welded Cr-Mo steel. This model considers multiple welding 

parameters, including material thickness, welding current, number of passes, and electrode 

diameter, to predict hardness variations in both the WZ and HAZ. By simulating complex, non-

linear relationships, neural networks offer an efficient, cost-effective means of predicting 

hardness, potentially reducing the reliance on exhaustive experimental procedures. 

 

Literature Review 

 

Material-Specific Hardness Prediction; Studies on the hardness characteristics of Cr-Mo steels 

have shown that high heat input during welding can soften the HAZ, significantly affecting overall 

joint performance [5]. While some research has modelled the effects of heat input on the mechanical 

properties of Cr-Mo steels, few studies explicitly explore hardness prediction across both the WZ and 

HAZ. This gap underscores the need for models that predict hardness distribution, especially given 

Cr-Mo steel's high sensitivity to welding heat input. 

Advancements in Neural Network Predictive Modelling; Recent studies have shown that neural 

networks outperform traditional methods like the Taguchi method and response surface methodology 

(RSM) when dealing with multi-variable, non-linear welding processes [6]. Although these studies 

highlight neural networks’ strengths, their application to Cr-Mo steel and TIG welding processes 

remains relatively unexplored. The current research aims to bridge this gap by leveraging neural 

networks to optimize hardness prediction for Cr-Mo steel flat bars, facilitating better control over 

welding parameters. 

Pros and Cons of Current Methods; Optimization methods like the Taguchi method and RSM are 

effective in establishing optimal welding parameters but are limited by their linear approach, which 

may not capture complex, non-linear relationships as effectively as neural networks. While empirical 

models offer ease of use, their reliance on extensive physical testing and empirical constants restricts 

adaptability across varied welding conditions and material compositions [7]. Neural networks, in 

contrast, provide flexibility and accuracy, albeit with the need for substantial training data and 

computational resources [8]. By integrating neural network predictions with welding parameter 

control, this research seeks to minimize the limitations of traditional methods while advancing model 

precision. 

Importance of Parameter Variation on Hardness; Parameters like welding speed, current, and 

electrode diameter are known to influence weld thermal cycles, affecting both the microstructure and 

mechanical properties of welded joints. In Cr-Mo steel, variations in these parameters can lead to 

substantial differences in hardness due to microstructural changes within the HAZ and WZ. Few 

studies, however, provide a multi-zone analysis that models how such parameter variations affect 

hardness across different zones, emphasizing the need for comprehensive prediction models [9, 10]. 

This research contributes to the field by introducing a neural network model that accurately predicts 

hardness in TIG-welded Cr-Mo steel across both the weld zone and heat-affected zone. By 
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incorporating critical welding parameters, this model enhances the understanding of how TIG welding 

affects Cr-Mo steel's hardness profile and offers a reliable alternative to physical testing. The findings 

aim to aid in welding process optimization, improve joint performance, and foster safer applications 

in high-stress environments. 

 

Materials and Methods 

 

The Cr-Mo steel bar used in this study has a chemical composition detailed in Table 1. The 

welding process involved a double-sided half V-groove weld joint profile, with one, two, and 

three weld passes being examined using non-consumable electrodes. The TIG welding method 

was employed under Argon gas protection, with parameters set to 24 V, 90-150 A, and a gas flow 

rate of 10-12 l/min. Thermocouples were strategically placed at various points of interest away 

from the weld centreline, as shown in Fig. 1, to monitor temperature distribution. Microhardness 

measurements across the weld section were taken using a Rockwell hardness testing machine 

(Model RBHT) following ASTM A304 standard procedures. A 100 kg load was applied to indent 

the surface using a 1/16" steel ball indenter at five different positions, and the average of these 

readings was recorded as the hardness value of the Cr-Mo steel bar in different zones. 
 

Table 1. Chemical Composition (wt %) of as-received Cr-Mo steel bar (ASTM A304) 

 

 
 

Fig. 1. Double-Sided Half V-Groove Weld Joint sample  

 

The selection of input parameters was guided by their well-documented impact on welding 

outcomes. Material thickness and welding current were included due to their direct effect on heat 

input, which in turn affects the cooling rate and microstructure formation in both the weld zone 

and the heat-affected zone [14]. The number of passes and wire diameter were incorporated to 

account for their influence on weld metal deposition and bead geometry [4, 12]). Welding 

Parameters and Experimental Setup of the study focused on material thickness, welding current, 

number of weld passes, and electrode diameter as variable factors, detailed in Table 2. 
 

Table 2. TIG Welding process parameters and level 

 

Parameters Level-1 Level-2 Level-3 

Material Thickness (mm) 5 10 15 

Welding Current(A) 90 110 150 

Welding Pass 1 2 3 

Electrode diameter (Ø mm) 1.6 2.4 3.2 

Material C Mn Si P S Cr Ni Mo N Fe 

Composition (wt. %) 0.04 0.15 0.08 0.02 0.02 17.62 8.47 0.55 0.07 72.98 
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Neural network model development 

The neural network model, illustrated in Fig. 2, was developed using the SPSS software suite, 

which is renowned for its robust statistical and machine learning capabilities [7]. The model's 

input layer comprises nodes representing key welding parameters: material thickness, welding 

current, number of welding passes, and diameter of the welding wire. These parameters were 

selected based on their significant influence on the hardness properties of welded joints, as 

substantiated by prior research [13]. 

The Neural Network model features a single hidden layer with eight neurons (H1 to H8), 

utilizing the Softmax activation function. Although Softmax is traditionally used for 

classification, it was adapted in this study to handle the non-linear regression problem of hardness 

prediction, demonstrating its versatility in machine learning applications [5, 13]. The output layer 

employs the identity activation function, ensuring that the model outputs continuous hardness 

values, which are appropriate for regression tasks. 

Figure 2 presents the architecture of the neural network model developed using SPSS 

software, which was designed to predict hardness characteristics in Cr-Mo steel welded joints. 

The model incorporates an input layer, a hidden layer, and an output layer: 

The input layer consists of four critical welding parameters: material thickness, welding 

current, the number of weld passes, and electrode diameter. These parameters are known to 

significantly impact the hardness of the weld zone (WZ) and the heat-affected zone (HAZ). The 

selection of these parameters is supported by prior research, which emphasizes their influence on 

the microstructure and mechanical properties of welded joints. 

The hidden layer comprises eight neurons (H1 to H8), with each neuron representing a 

complex combination of the input parameters. The neural network utilizes the Softmax activation 

function in the hidden layer, which, although typically used for classification tasks, was adapted 

for this regression problem to handle non-linear relationships effectively. 

The output layer consists of two nodes corresponding to the hardness values in the weld zone 

(WZ) and the heat-affected zone (HAZ). The identity activation function was employed here to 

produce continuous outputs suitable for regression analysis. 

The synaptic weights between the layers indicate the strength of the connections. Positive 

synaptic weights (blue lines) suggest a direct positive influence, while negative synaptic weights 

(grey lines) indicate an inverse relationship between the connected neurons. 

In the context of a neural network model, the terms "hidden" and "output" refer to specific 

layers in the neural network architecture: 

The hidden layer(s) are intermediate processing layers between the input layer (which receives 

the initial data) and the output layer (which generates the prediction). In the hidden layer, nodes 

(or "neurons") apply weights to the inputs and process them using an activation function (in this 

case, the Softmax function). These layers are essential for capturing and modelling complex, non-

linear relationships between the input parameters (such as thickness, current, number of passes, 

and electrode diameter) and the desired output (hardness characteristics in the weld zone and 

heat-affected zone). By adjusting the weights and biases in these hidden layers, the network learns 

patterns that aid in accurate predictions. 

The output layer is the final layer in the network that generates the predicted results after 

processing the data through the hidden layers. Here, the output layer consists of two nodes, 

representing predictions for the hardness in the weld zone (WZ) and the heat-affected zone 

(HAZ). The output layer applies an identity activation function, which means it outputs the raw 

values computed by the model, representing the predicted hardness characteristics in each zone 

without additional transformation. 

This architecture enables the neural network to map the relationships between input 

parameters and the output hardness characteristics effectively. The hidden layers capture and 

model the non-linear influences of each parameter on hardness, while the output layer provides 

the final hardness predictions based on the learned relationships. 
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Fig. 2. SPSS Developed a neural network architecture for the prediction of hardness characteristics 

 

Table 3 provides an in-depth analysis of the relationship between welding parameters and the 

resulting hardness values in the Weld Zone (WZ) and Heat-Affected Zone (HAZ). The dataset 

covers various material thicknesses (5 mm, 10 mm, and 15 mm), welding currents (90 A to 150 

A), the number of weld passes (1 to 3), and electrode diameters (1.6 mm to 3.2 mm). The data 

reveals that as material thickness and welding current increase, hardness values at both the WZ 

and HAZ generally rise, likely due to slower cooling rates in thicker materials and higher heat 

input. Additionally, multiple weld passes and larger electrode diameters tend to increase hardness, 

particularly in the HAZ, due to the repeated heating and cooling cycles and greater heat input. 

The dataset also includes predicted hardness values at the WZ and HAZ obtained using a 

neural network model, which shows strong alignment with the experimentally measured values. 

The model predicts hardness in the WZ within a range of 109.82 to 124.63 HV and in the HAZ 

within 119.51 to 162.54 HV. These predictions closely match the actual hardness values, 

indicating that the model effectively captures the complex, non-linear relationships between 

welding parameters and material hardness. 

This study underscores the significant influence of welding parameters on the hardness of 

welded materials and demonstrates the accuracy of the neural network model in predicting these 

values. The findings highlight the model's potential as a tool for optimizing welding processes, 

ensuring that desired material characteristics are achieved consistently. Understanding the 

interplay between these parameters and material properties is crucial for improving welding 

outcomes and achieving specific hardness requirements in welded joints. In this research, a total 
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of 18 datasets and 77.8% (14) of the datasets were used for training and 22.2% (4) for testing. 

Table 3 shows the datasets used for the research. 

 
Table 3. Welding parameters and the hardness values obtained from the experiment 

 

 

Results and Discussion 

 

Hardness properties   

The analysis of the welding parameters and their effect on hardness, as predicted by the SPSS-

developed neural network architecture, reveals distinct trends. Material thickness, welding 

current, number of weld passes, and electrode diameter are key factors influencing hardness 

outcomes. The neural network effectively captures these relationships, with the highest hardness 

values observed in specimens with a material thickness of 15 mm, a welding current of 110 A, 1 

weld pass, and a 3.2 mm electrode diameter. These specimens exhibit superior hardness 

characteristics at both the weld zone (WZ) and the heat-affected zone (HAZ), reaching 165 HV 

and 164 HV, respectively. This suggests that these specific welding conditions optimize the 

hardness properties, particularly in thicker materials, where the heat input and cooling rates lead 

to more significant microstructural changes. 

Furthermore, the neural network results indicate that the HAZ generally shows higher 

hardness than the WZ, likely due to rapid cooling and finer microstructure formation in this 

region. The highest percentage hardness variation occurs in the base metal (BM) zones at 12 mm 

and 15 mm from the weld centreline, highlighting the influence of the selected welding 

parameters on the surrounding material. This broader zone of increased hardness can be 

advantageous for applications requiring enhanced durability and wear resistance. The SPSS-

developed neural network demonstrates its utility in predicting hardness outcomes, enabling the 

optimization of welding parameters for improved material performance. 

Similar observations have been reported in studies focusing on the impact of welding 

parameters on the hardness and mechanical properties of welded joints. For instance, research by 

Sharma et al. [18] demonstrated that increasing material thickness and optimizing welding current 

significantly enhances hardness in both the weld zone and the heat-affected zone. The study also 

observed that larger electrode diameters, coupled with fewer weld passes, resulted in improved 

hardness due to the concentration of heat and its effects on the microstructure. Additionally, Singh 

et al. [19] found that the heat-affected zone typically exhibits higher hardness than the weld zone, 

S/N 

Material 

Thickness 

(mm) 

Welding 

Current 

(A) 

Number 

of weld 

pass 

Electrode 

Diameter 

(Ømm) 

Hardness 

value at 

WZ 

(HV) 

Hardness 

value at 

HAZ 

(HV) 

NN 

predicted 

at WZ 

(HV) 

NN 

predicted 

at HAZ 

(HV) 

1 5 90 1 1.6 105 120 111.58 119.97 

2 5 90 1 1.6 107 117 111.58 119.97 

3 5 110 2 2.4 109 119 109.82 119.92 

4 5 110 2 2.4 110 118 109.82 119.92 

5 5 150 3 3.2 111 121 110.85 119.51 

6 5 150 3 3.2 112 122 110.85 119.51 

7 10 90 2 3.2 116 138 115.01 138.42 

8 10 90 2 3.2 114 141 115.01 138.42 

9 10 110 3 1.6 115 142 116.04 138.00 

10 10 110 3 1.6 117 138 116.04 138.00 

11 10 150 1 2.4 115 140 112.46 131.56 

12 10 150 1 2.4 110 125 112.46 131.56 

13 15 90 3 2.4 124 162 124.63 162.54 

14 15 90 3 2.4 125 163 124.63 162.54 

15 15 110 1 3.2 122 159 121.71 158.82 

16 15 110 1 3.2 122 160 121.71 158.82 

17 15 150 2 1.6 123 161 122.95 159.66 

18 15 150 2 1.6 124 163 122.95 159.66 
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attributed to rapid cooling rates leading to finer grain structures. These findings are consistent 

with the neural network predictions in the present study, underscoring the importance of carefully 

selecting welding parameters to achieve desired material properties. The use of artificial neural 

networks, as shown in this study, provides an effective tool for predicting and optimizing these 

outcomes [18, 19]. 

 
Model validation and performance 

The neural network model illustrated in Figure 2 serves as a predictive tool designed to 

estimate hardness characteristics at the weld zone (WZ) and heat-affected zone (HAZ) by 

analyzing various welding parameters. Leveraging an artificial neural network (ANN) 

architecture, this model effectively manages the complex, nonlinear relationships between 

multiple input variables—such as material thickness, welding current, number of weld passes, 

and electrode diameter—and the resulting hardness values at the WZ and HAZ. The model's 

architecture is composed of several layers, including an input layer that processes the welding 

parameters, multiple hidden layers with neurons employing a Softmax activation function, and 

an output layer that utilizes an identity activation function to deliver continuous hardness 

predictions. 

The model's training involved fine-tuning the synaptic weights to minimize the prediction 

errors using a backpropagation algorithm, which adjusts weights based on the gradient of a loss 

function like Mean Squared Error (MSE). To evaluate the model's accuracy, both MSE and R-

squared (R²) values were computed, with lower MSE indicating reduced prediction error and 

higher R² suggesting a better fit between predicted and actual values. As shown in Table 4, the 

model was trained on experimental data, learning the relationships between various welding 

parameters and the resulting hardness characteristics. For instance, the model likely captured the 

trend that increasing material thickness tends to yield higher hardness values at the HAZ. Overall, 

this neural network model demonstrates significant potential in accurately predicting hardness 

across diverse welding conditions, thereby optimizing welding processes for desired mechanical 

properties while reducing the need for extensive physical experimentation. 

 
Table 4. Predictive accuracy and error metrics for hardness in different zones 

 

Zone Mean Squared Error (MSE) R-squared (R²) 

Welded Zone (WZ) 0.94 0.976 

Heat Affected Zone (HAZ) 0.94 0.997 

 
The values in Table 4, such as the Mean Squared Error (MSE) and R-squared (R²), are 

commonly calculated to assess the accuracy and performance of predictive models, like the neural 

network model used here. These metrics are obtained by comparing the predicted hardness values 

from the model with the actual measured hardness values. Each metric is typically computed 

using Mean Squared Error (MSE) and R-squared (R²). MSE measures the average squared 

differences between predicted values and actual values. It’s calculated as: 

 

MSE =  
1

𝑛
∑ (𝑦𝑖 − ŷ𝑖)𝑛

𝑖=1

2
    (1)  

 

where, n is the number of data points, 𝑦𝑖 is the actual measured hardness value for data point i 

and ŷ𝑖is the predicted hardness value for data point i. 

In Table 4, an MSE of 0.94 for both the Welded Zone (WZ) and Heat-Affected Zone (HAZ) 

indicates a relatively low average squared error, suggesting that the model predictions are close 

to the actual measurements. R-squared, also known as the coefficient of determination, indicates 

how well the model explains the variability in the data. It’s calculated as: 
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R2 = 1 - 
∑ (𝒚𝒊−ŷ𝒊)𝟐

𝒏

𝒊=𝟏

∑ (𝒚𝒊−ў𝒊)𝟐𝒏
𝒊=𝟏

     (2) 

 

where, yi is the actual measured value, ŷ𝑖 is the predicted value and ў𝑖is the mean of the actual 

measured values. 

An R² value close to 1 (e.g., 0.976 for WZ and 0.997 for HAZ) indicates a high level of 

predictive accuracy, meaning the model explains most of the variance in the actual hardness 

values. The steps for obtaining these Metrics are; after training the neural network, obtain 

predicted hardness values for both the Welded Zone (WZ) and the Heat-Affected Zone (HAZ). 

Using the predicted and measured values, apply the formulas for MSE and R² as outlined above. 

These calculations can be done using statistical software or programming tools, SPSS. The lower 

the MSE and the closer the R² is to 1, the better the model's predictive performance. 

These values in Table 4 reflect the predictive accuracy and error of the neural network model 

when applied to hardness prediction in different zones. 

 

Discussions 

The MSE value of 0.94 indicates a low average squared difference between the predicted and 

actual hardness values, suggesting that the model's predictions closely align with the actual 

measurements in the weld zone (WZ). The R² value of 0.976 signifies that a high proportion of 

the variance in the WZ hardness data is explained by the model, highlighting its strong predictive 

capability for hardness in this zone. 

In the heat-affected zone (HAZ), an even lower MSE of 0.94 further reflects the model's 

accuracy, with an R² value of 0.997 suggesting an exceptionally high correlation between the 

predicted and actual hardness values. This indicates that the model performs very effectively in 

predicting hardness in the HAZ with minimal error. 

Overall, the model demonstrates excellent predictive power for both the WZ and HAZ, with 

very low MSE values indicating minimal prediction error. The high R² values across both zones 

suggest that the model reliably explains the majority of variability in hardness measurements, 

with slightly better predictive performance in the HAZ compared to the WZ. This highlights the 

model's reliability and accuracy for assessing hardness in different regions of the weld. Figure 3 

present line plot comparing "Predicted vs. Measured Hardness Values at the Weld Zone (WZ)." 

The measured hardness values are shown with a solid blue line and circular markers, while the 

predicted values are represented by a dashed red line with "x" markers. 

 

 
 

Fig. 3. Predicted vs. Measured Hardness Values at the Weld Zone (WZ) 
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Fig. 4 presents the line plot for "Predicted vs. Measured Hardness Values at the Heat-Affected 

Zone (HAZ)." The measured hardness values are represented by a solid blue line with circular 

markers, while the predicted values are shown as a dashed red line with "x" markers. This format 

clearly differentiates between the two sets of values at each sample point. 
 

 
 

Fig. 4. Predicted vs. Measured Hardness Values at the Heat-Affected Zone (HAZ) 

 

The figures compare predicted and measured hardness values in two zones of a welded joint: 

the Weld Zone (WZ) and the Heat-Affected Zone (HAZ). In Figure 3, the scatter plot for the WZ 

shows a strong positive correlation, with predicted values closely following the actual hardness 

measurements. Although there is some dispersion around the ideal prediction line, the model 

demonstrates reasonable accuracy in predicting hardness within the WZ, with only minor 

deviations likely due to variations in material properties. 

In contrast, Figure 4, which focuses on the HAZ, also shows a positive correlation but with 

greater scatter around the line of perfect prediction. This increased dispersion suggests that the 

model's predictive accuracy for the HAZ is lower than for the WZ. The wider spread of points, 

particularly at higher hardness values, indicates that the model may struggle to accurately account 

for the more complex microstructural changes in the HAZ, resulting in less precise predictions in 

this region. 

 
Table 5. Independent variable importance 

 

  Importance Normalized Importance 

Material Thickness (mm)  .662 100.0% 

Welding Current (A)  .104 15.7% 

Number of weld pass  .125 18.8% 

Electrode Diameter (Ømm)  .110 16.5% 

 

Table 5 highlights that Material Thickness is the most influential independent variable, with 

a normalized importance of 100%. This indicates that changes in material thickness have a 

significant impact on the outcome, likely due to its direct effect on factors such as heat dissipation, 

structural integrity, and overall weld quality. In contrast, Welding Current, with a normalized 

importance of 15.7%, is the least influential variable. Although it is important for determining 
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weld penetration and quality, its effect is considerably less significant compared to material 

thickness. 

The Number of Weld Passes and Electrode Diameter also contribute to the outcome, but to a 

lesser extent, with normalized importance values of 18.8% and 16.5%, respectively. These 

variables play secondary roles in influencing the outcome, affecting aspects such as weld bead 

geometry, heat input, and arc stability. Overall, while Material Thickness is the dominant factor, 

the other variables have much lower relative importance, suggesting that optimization efforts 

should prioritize material thickness, with finer adjustments made to the other variables as 

necessary. 

 

Conclusions 

 

In this study, we applied a neural network model to predict the hardness characteristics of 

TIG-welded Cr-Mo steel flat bars, focusing on the weld and heat-affected zones. The following 

key conclusions were derived: 

The neural network model demonstrated strong predictive capability for hardness values in 

TIG-welded joints of Cr-Mo steel, indicated by high R² values and low mean squared error 

(MSE). This accuracy is particularly prominent in the heat-affected zone (HAZ), showcasing the 

model’s potential for practical application. 

Material thickness emerged as a significant factor influencing hardness predictions. The 

model effectively captured the impact of thickness variations across different welding conditions, 

underscoring the importance of considering this parameter in predictive models to improve 

reliability and robustness. 

The model's predictive accuracy was higher in the welded zone than in the heat-affected zone, 

where more dispersion was observed. This variability highlights opportunities for further 

optimization, particularly in refining the model to improve consistency and precision in the heat-

affected zone. 

This study contributes to a more comprehensive understanding of how TIG welding 

parameters affect Cr-Mo steel's hardness. The findings support the use of neural networks as an 

efficient and cost-effective tool for predicting mechanical properties in welding applications, 

which may reduce the need for extensive experimental trials.  
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