CURRENT TRENDS IN SURFACE MODIFICATION FOR DENTAL IMPLANTS
European Journal of Materials Science and Engineering, Volume 9, Issue 4, 2024
PDF Full Article, DOI: 10.36868/ejmse.2024.09.04.309, pp. 309-322
Cristiana Ioana TATIA1, Maria IANCU1, Alina ROBU1,*, Octavian TRANTE1, Iulian ANTONIAC1, Anca Maria FRATILA 2
1 National University of Science and Technology POLITEHNICA Bucharest, Faculty of Material Science and Engineering, Department of Materials Science and Physical Metallurgy, 313 Splaiul Independentei Street, 060042, Bucharest, Romania.
2 Department of Dental Medicine and Nursing, Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania.
* Corresponding author: alinarobu2021@gmail.com
Abstract
Titanium and its alloys are amongst the most effective and commonly used biomaterials for the production of dental implants. But, in order to ensure long term success of these implants, surface modification techniques that improve osseointegration and prevent bacterial colonization are highly required. Until now, a variety of surface modification methods were proposed, the most basic ones involving mechanical or chemical processing to increase the roughness coefficient thus favoring osseointegration. However, this is not enough to prevent the common implant-related complications such as peri-implantitis. Therefore, an increased research interest was directed towards the development of functional coatings that can be tailored to both enhance osseointegration and prevent bacterial infections. This review aims to present the currently available titanium-based implants modification methods along with their main benefits and drawbacks. For a better understanding of the subject, the chemical structure and surface characteristics of titanium-based dental implants, and the main causes of implant failure were presented. Moreover, current trends such as nano-scale surface roughening and 3D printing of dental implants were also mentioned.
Keywords: titanium, implant failure, surface modification, osseointegration.
References:
[1] C. McLister, C. Moore, S.-M. Harkness, C. O’Neill, M. Donnelly, G. McKenna, Appropriateness of tooth replacement strategies for adult patients in the United Kingdom with reduced dentitions – A modified Delphi analysis, Journal of Dentistry, 122, 2022, 104125.
[2] M. Martinez-Mondragon, G. Urriolagoitia-Sosa, B. Romero-Ángeles, D. Maya-Anaya, J. Martínez-Reyes, F. J. Gallegos-Funes, G. M. Urriolagoitia-Calderón, Numerical analysis of zirconium and titanium implants under the effect of critical masticatory load, Materials, 15, 2022, 7843.
[3] A. Rayeesa, Khanum, J. Srilakshmi, K. Shwetha, Poovani, Current trends in modifying surface topography of dental implants -A literature review, International Journal of Science and Research (IJSR), 12, 2023, 3.
[4] L. Gaviria, J. P. Salcido, T. Guda, J. L. Ong, Current trends in dental implants, Journal of the Korean Association of Oral and Maxillofacial Surgeons, 40, 2014, 50-60.
[5] P. Aneksomboonpol, B. Mahardawi, P. N. Nan, P. Laoharungpisit, T. Kumchai, N. Wongsirichat, N. Aimjirakul, Surface structure characteristics of dental implants and their potential changes following installation: A literature review, Journal of the Korean Association of Oral and Maxillofacial Surgeons, 49, 2023, 114-124.
[6] C. M. Abraham, A brief historical perspective on dental implants, their surface coatings and treatments, The Open Dentistry Journal, 8, 2014, 50-55.
[7] S. Joshi, A. Kaur, A. Kashyap, S. Dhillon, S. Kansil, I. Khilji, Eras of implants, Journal of Oral Medicine, Oral Surgery, Oral Pathology and Oral Radiology, 7, 2021, 23-28.
[8] K. T. Kim, M. Y. Eo, T. T. H. Nguyen, S. M. Kim, General review of titanium toxicity, International Journal of Implant Dentistry, 5, 2019, 10.
[9] M. Prakash, K. Audi, R. M. Vaderhobli, Long-term success of all-ceramic dental implants compared with titanium implants, Journal of long-term effects of medical implants, 31, 2021, 73-89.
[10] I.V. Antoniac, M. Filipescu, K. Barbaro, A. Bonciu, R. Birjega, C.M. Cotrut, E. Galvano, M. Fosca, I.V. Fadeeva, G. Vadalà, M.D., Julietta V. Rau, Iron ion‐doped tricalcium phosphate coatings improve the properties of biodegradable magnesium alloys for biomedical implant application, Advanced Materials Interfaces, 7 (16), 2020.
[11] E. Craciunescu, C. Sinescu, M.L. Negrutiu, D.M. Pop, H.C. Lauer, M. Rominu, I. Antoniac, Shear bond strength tests of zirconia veneering ceramics after chipping repair. Journal of Adhesion Science and Technology, 30(6), 666–676, 2015.
[12] A. Vladescu, M.A. Surmeneva, C.M. Cotrut, R.A. Surmenev, I.V. Antoniac, Bioceramic Coatings for Metallic Implants. In: Antoniac, I. (eds) Handbook of Bioceramics and Biocomposites. Springer, Cham, 2016
[13] H. Parikh, U. Oza, S. Duseja, C. Agrawal, Dental Implant Biomaterials: A Comprehensive Review International, Journal of Dentistry, 5, 2020, 87-92.
[14] H. Mohammadi, S. Beddu, M. Petrů, M. Sepantafar, M. Ebadi, B. K. Yap, L. T. Bang, T. C. Yong, S. Ramesh, S. S. Rahimian Koloor, Advances in silicon nitride ceramic biomaterials for dental applications – A review, Journal of Materials Research and Technology, 28, 2024, 2778-2791.
[15] F. Rahmitasari, Y. Ishida, K. Kurahashi, T. Matsuda, M. Watanabe, T. Ichikawa, PEEK with reinforced materials and modifications for dental implant applications, Dentistry Journal, 5, 2017, 35.
[16] N. Hossain, M. H. Mobarak, M. A. Islam, A. Hossain, M. Z. Al Mahmud, M. T. Rayhan, M. A. Chowdhury, Recent development of dental implant materials, synthesis process, and failure – A review, Results in Chemistry, 6, 2023, 101136.
[17] I. Antoniac, Biologically responsive biomaterials for tissue engineering, Springer Science & Business Media, 2012
[18] J. E. Ellingsen, P. Thomsen, S. P. Lyngstadaas, Advances in dental implant materials and tissue regeneration, Periodontology 2000, 41, 2006, 136-156.
[19] R. Oancea, A. Bradu, C. Sinescu, R.M. Negru, M.L. Negrutiu, I. Antoniac, Assessment of the sealant/tooth interface using optical coherence tomography, Journal of Adhesion Science and Technology, 29 (1), 49-58, 2015.
[20] S. M. Sadati Tilebon, A. Emamian, H. Ramezanpour, H. Yousefi, M. Özcan, S. M. Naghib, Y. Zare, K. Y. Rhee, Intelligent modeling and optimization of titanium surface etching for dental implant application, Scientific Reports, 12, 2022, 7184.
[21] F. Accioni, J. Vázquez, M. Merinero, B. Begines, A. Alcudia, Latest trends in surface modification for dental implantology: innovative developments and analytical applications, Pharmaceutics, 14, 2022, 455.
[22] A.A. Matei, I. Pencea, S.G. Stanciu, R. Hristu, I. Antoniac, E. Ciovica, C.E. Sfat, Structural characterization and adhesion appraisal of TiN and TiCN coatings deposited by CAE-PVD technique on a new carbide composite cutting tool, Journal of Adhesion Science and technology, 29 (23), 2576-2589, 2015.
[23] S Cavalu, IV Antoniac, L Fritea, IM Mates, C Milea, V Laslo, S Vicas, Surface modifications of the titanium mesh for cranioplasty using selenium nanoparticles coating, Journal of Adhesion Science and Technology, 32 (22), 2509-2522, 2018
[24] M. McCracken, Dental implant materials: commercially pure titanium and titanium alloys, Journal of Prosthodontics, 8, 1999, 40-43.
[25] F. A. Shah, M. Trobos, P. Thomsen, A. Palmquist, Commercially pure titanium (cp-Ti) versus titanium alloy (Ti6Al4V) materials as bone anchored implants – Is one truly better than the other?, Materials science & engineering: C, 62, 2016, 960-966.
[26] G. Purcek, G. Yapici, I. Karaman, H. Maier, Effect of commercial purity levels on the mechanical properties of ultrafine-grained titanium, Materials Science and Engineering: A, 528, 2011, 2303-2308.
[27] P. Trueba, C. Navarro, J. A. Rodríguez-Ortiz, A. M. Beltrán, F. J. García-García, Y. Torres, Fabrication and characterization of superficially modified porous dental implants, Surface and Coatings Technology, 408, 2021, 126796.
[28] S. C. Sartoretto, A. T. Alves, R. F. Resende, J. Calasans-Maia, J. M. Granjeiro, M. D. Calasans-Maia, Early osseointegration driven by the surface chemistry and wettability of dental implants, Journal of Applied Oral Science, 23, 2015, 279-287.
[29] L. Parisi, B. Ghezzi, M. G. Bianchi, A. Toffoli, F. Rossi, O. Bussolati, G. M. Macaluso, Titanium dental implants hydrophilicity promotes preferential serum fibronectin over albumin competitive adsorption modulating early cell response, Materials science & engineering: C, 117, 2020, 111307.
[30] G. R. M. Matos, Surface Roughness of Dental Implant and Osseointegration, Journal of Maxillofacial and Oral Surgery, 20, 2021, 1-4.
[31] R. S. Jayesh, V. Dhinakarsamy, Osseointegration, Journal of Pharmacy & Bioallied Sciences, 7, 2015, S226-229.
[32] D. J. Reisberg, Osseointegration and prosthodontic considerations, in Aesthetic Surgery of the Facial Skeleton, eds. S. B. Baker, P. K. Patel and J. Weinzweig, Elsevier, London, 2022, P. 311-317.
[33] L. Parisi, A. Toffoli, G. Ghiacci, G. M. Macaluso, Tailoring the interface of biomaterials to design effective scaffolds, Journal of Functional Biomaterials, 9, 2018, 50.
[34] Z. Zhou, Q. Shi, J. Wang, X. Chen, Y. Hao, Y. Zhang, X. Wang, The unfavorable role of titanium particles released from dental implants, Nanotheranostics, 5, 2021, 321-332.
[35] S. Ivanovski, P. M. Bartold, Y. S. Huang, The role of foreign body response in peri-implantitis: What is the evidence?, Periodontology 2000, 90, 2022, 176-185.
[36] S. P. Kochar, A. Reche, P. Paul, The etiology and management of dental implant failure: A review, Cureus, 14, 2022, e30455.
[37] S. Thomas, F. Barrak, Awareness of peri-implantitis among general dental practitioners in the UK: a questionnaire study, British Dental Journal, 2024.
[38] J. Prathapachandran, N. Suresh, Management of peri-implantitis, Dental Research Journal, 9, 2012, 516-521.
[39] A. M. Inchingolo, G. Malcangi, L. Ferrante, G. Del Vecchio, F. Viapiano, A. D. Inchingolo, A. Mancini, C. Annicchiarico, F. Inchingolo, G. Dipalma, E. Minetti, A. Palermo, A. Patano, Surface coatings of dental implants: A review, Journal of Functional Biomaterials, 14, 2023, 287.
[40] L. Le Guéhennec, A. Soueidan, P. Layrolle, Y. Amouriq, Surface treatments of titanium dental implants for rapid osseointegration, Dental Materials, 23, 2007, 844-854.
[41] S. Najeeb, Z. Khurshid, J. P. Matinlinna, F. Siddiqui, M. Z. Nassani and K. Baroudi, Nanomodified PEEK dental implants: Bioactive composites and surface modification, a review, International Journal of Dentistry, 2015, 2015, 381759.
[42] A. Dank, I. H. A. Aartman, D. Wismeijer, A. Tahmaseb, Effect of dental implant surface roughness in patients with a history of periodontal disease: A systematic review and meta-analysis, International Journal of Implant Dentistry, 5, 2019, 12.
[43] P. G. Coelho, J. M. Granjeiro, G. E. Romanos, M. Suzuki, N. R. Silva, G. Cardaropoli, V. P. Thompson, J. E. Lemons, Basic research methods and current trends of dental implant surfaces, Journal of Biomedical Materials Research: B, 88, 2009, 579-596.
[44] A. El Hassanin, G. Quaremba, P. Sammartino, D. Adamo, A. Miniello, G. Marenzi, Effect of implant surface roughness and macro- and micro-structural composition on wear and metal particles released, Materials (Basel, Switzerland), 14, 2021, 6800.
[45] J. Youssef Al, M. Wolf Dieter, A.-R. Abdulaziz, Z. Spiros, The effects of surface roughening techniques on surface and electrochemical properties of Ti implants, in Dental Implantology and Biomaterial, ed. A. Mazen Ahmad Jawad Amin, IntechOpen, Rijeka, 2016, p. 8.
[46] K. A. Kravanja and M. Finšgar, A review of techniques for the application of bioactive coatings on metal-based implants to achieve controlled release of active ingredients, Materials & Design, 217, 2022, 110653.
[47] B. Pattanaik, S. Pawar and S. Pattanaik, Biocompatible implant surface treatments, Indian Journal of Dental Research, 23, 2012, 398-406.
[48] M. Oprea, A. M. Pandele, A. I. Nicoara, A. Nicolescu, C. Deleanu, S. I. Voicu, Crown ether-functionalized cellulose acetate membranes with potential applications in osseointegration, International Journal of Biological Macromolecules, 230, 2023, 123162.
[49] X. Li, B. Yang, M. Xu, F. Li, Z. Geng, W. Cui, X. Sun, Y. Li, Y. Liu, Doped multiple nanoparticles with hydroxyapatite coating show diverse health effects in vivo, International Journal of Nanomedicine, 18, 2023, 5031-5054.
[50] F. Tosan, N. Rahnama, D. Sakhaei, A. H. Fathi, A. Yari, Effects of doping metal nanoparticles in hydroxyapatite in Improving the physical and chemical properties of dental implants, Nanomedicine Research Journal, 6, 2021, 327-336.
[51] M. Oprea and S. I. Voicu, Cellulose Acetate-Based Materials for Water Treatment in the Context of Circular Economy, Water, 15, 2023, 1860.
[52] M. Oprea and S. I. Voicu, Cellulose acetate-based membranes for the removal of heavy metals from water in the context of circular economy, Industrial Crops and Products, 206, 2023, 117716.
[53] X.-J. Wang, H.-Y. Liu, X. Ren, H.-Y. Sun, L.-Y. Zhu, X.-X. Ying, S.-H. Hu, Z.-W. Qiu, L.-P. Wang, X.-F. Wang, G.-W. Ma, Effects of fluoride-ion-implanted titanium surface on the cytocompatibility in vitro and osseointegatation in vivo for dental implant applications, Colloids and Surfaces: B, 136, 2015, 752-760.
[54] J. Zhou, B. Li, Y. Han, F-doped TiO2 microporous coating on titanium with enhanced antibacterial and osteogenic activities, Scientific Reports, 8, 2018, 17858.
[55] G. Krishnamoorthy, A. Narayana, D. Balkrishanan, Chlorhexidine for the Treatment of Peri-Implantitis: Is it a Benison?, Journal of Long-Term Effects of Medical Implants, 32, 2022, 19-23.
[56] Z. Xu, S. Krajewski, T. Weindl, R. Loeffler, P. Li, X. Han, J. Geis-Gerstorfer, H. P. Wendel, L. Scheideler, F. Rupp, Application of totarol as natural antibacterial coating on dental implants for prevention of peri-implantitis, Materials Science & Engineering: C, 110, 2020, 110701.
[57] O. T. Jensen, E. Weiss, D. Tarnow, Antimicrobial surface treatment of titanium dental implants: a narrative review between 2011 and 2021, Frontiers of Oral and Maxillofacial Medicine, 5, 2022.
[58] G. M. Esteves, J. Esteves, M. Resende, L. Mendes, A. S. Azevedo, Antimicrobial and antibiofilm coating of dental implants — Past and new perspectives, Antibiotics, 11, 2022, 235.
[59] Z. Sun, L. Ma, X. Sun, A. J. Sloan, N. M. O’Brien-Simpson, W. Li, The overview of antimicrobial peptide-coated implants against oral bacterial infections, Aggregate, 4, 2023, e309.
[60] S. Najeeb, M. S. Zafar, Z. Khurshid, S. Zohaib, S. M. Hasan, R. S. Khan, Bisphosphonate releasing dental implant surface coatings and osseointegration: A systematic review, Journal of Taibah University Medical Sciences, 12, 2017, 369-375.
[61] A. Palmquist, O. M. Omar, M. Esposito, J. Lausmaa, P. Thomsen, Titanium oral implants: surface characteristics, interface biology and clinical outcome, Journal of the Royal Society Interface, 7, 2010, S515-527.
[62] R. S. Bonato, G. V. O. Fernandes, M. D. Calasans-Maia, A. Mello, A. M. Rossi, A. C. O. Carreira, M. C. Sogayar, J. M. Granjeiro, The influence of rhBMP-7 associated with nanometric hydroxyapatite coatings titanium implant on the osseointegration: A pre-clinical study, Polymers, 14, 2022, 4030.
[63] N. López-Valverde, J. Aragoneses, A. López-Valverde, N. Quispe-López, C. Rodríguez, J. M. Aragoneses, Effectiveness of biomolecule-based bioactive surfaces, on os-seointegration of titanium dental implants: A systematic review and meta-analysis of in vivo studies, Frontiers in Bioengineering and Biotechnology, 10, 2022, 986112.
[64] I. Nemcakova, A. Litvinec, V. Mandys, S. Potocky, M. Plencner, M. Doubkova, O. Nanka, V. Olejnickova, B. Sankova, M. Bartos, E. Ukraintsev, O. Babčenko, L. Bacakova, A. Kromka, B. Rezek, D. Sedmera, Coating Ti6Al4V implants with nanocrystalline diamond functionalized with BMP-7 promotes extracellular matrix mineralization in vitro and faster osseointegration in vivo, Scientific Reports, 12, 2022, 5264.
[65] G. Mendonça, D. B. Mendonça, F. J. Aragão, L. F. Cooper, Advancing dental implant surface technology–from micron- to nanotopography, Biomaterials, 29, 2008, 3822-3835.
[66] T. Abu Alfaraj, S. Al-Madani, N. S. Alqahtani, A. A. Almohammadi, A. M. Alqahtani, H. S. AlQabbani, M. K. Bajunaid, B. A. Alharthy , N. Aljalfan, Optimizing osseointegration in dental implantology: A cross-disciplinary review of current and emerging strategies, Cureus, 15, 2023, e47943.