ejmse.2025.10.02.077

COMPUTATIONAL INVESTIGATIONS INTO THE PHYSICAL PROPERTIES OF CHALCOGENIDE PEROVSKITES MgBS3 (B = Hf, Ti, and Zr) FOR PHOTOVOLTAIC APPLICATIONS: DFT INSIGHT

European Journal of Materials Science and Engineering, Volume 10, Issue 2, 2025
PDF Full Article,  DOI: 10.36868/ejmse.2025.10.02.077,   pp. 77-98
Published: June 20, 2025

Rilwan O. BALOGUN 1,*, Olusola O. OYEBOLA2,
1 School of Science and Tech, Pan-Atlantic University, Km 52 Lekki-Epe Expressway, Ibeju-Lekki, 105101, Lagos, Nigeria.
2Department of Physics, University of Lagos, Akoka 100001, Lagos, Nigeria

* Corresponding author: rbalogun@pau.edu.ng

Abstract

A promising class of materials, chalcogenide perovskites (CPs), are characterized by their exceptional stability, environmentally friendly composition, and intriguing optoelectronic properties. To comprehensively analyze the structural, mechanical, and thermodynamic characteristics of MgBS3 (where B = Hf, Ti, and Zr), one of the most promising members of the metal chalcogenide perovskite family, we employed density functional theory (DFT) simulations. Our theoretical results indicate that MgHfS3 is the most stable compound, aligning well with the reported syntheses of other chalcogenide perovskites. These materials exhibit anisotropy, robust mechanical stability, and significant resistance to deformation under external stress, fulfilling the Born stability criteria. Pugh ratio analysis confirms that MgZrS3 (1.99) is ductile, as well as MgHfS3 (1.91) while MgTiS3 (0.05) is brittle. Thermodynamic calculations reveal the Debye temperatures of MgHfS3 (282.94 K), MgZrS3 (325.67 K), and MgTiS3 (376.76 K), along with vibrational energies, entropies, and constant volume heat capacities of MgHfS3 (115 JK⁻¹Nmol⁻¹) and MgZrS3 (112 JK⁻¹Nmol⁻¹). Notably, the free vibrational energy decreases rapidly with increasing temperature. These characteristics underscore the potential of MgBS3-based CPs in developing more robust and efficient optoelectronic devices and indoor photovoltaics. Furthermore, due to its lower Debye temperature compared to other CPs, MgHfS3 emerges as a significant candidate for thermodynamic applications. Our findings suggest that MgBS3 chalcogenide perovskites (B = Hf, Ti, and Zr) possess substantial promise for advancing ferromagnetic materials, renewable energy solutions, and optoelectronic devices.

Keywords: Chalcogenide-perovskites, mechanical, structural, thermal, photovoltaic and optoelectronics.

References:

  1. Fatimah, G. Purwiandono, A. Hidayat, S. Sagadevan, A. Kamari, Mechanistic insight into the adsorption and photocatalytic activity of a magnetically separable γ- Fe2O3/montmorillonite nanocomposite for rhodamine B removal: Chemical Physics Letters, 792, 2022, p. 139-410.
  2. Arora, C. Chawla, A. Chandra, S. Sagadevan, S. Garg, Advances in the strategies for enhancing the photocatalytic activity of TiO2:Conversion from UV-light active to visible-light active photocatalyst: Inorganic Chemistry Communications, 143, 2022, p.109700.
  3. Munusamy, RP. Sivasankaran, K. Sivaranjan, P. Sabhapathy, V. Narayanan, F. Mohammad, et al. Gallium nitride-polyaniline-polypyrrole hybrid nanocomposites as an efficient electrochemical sensor for mebendazole detection in drugs: Electrochimica Acta. 448, 2023, p. 142148.
  4. Sivasamy, S. Amirthaganesan, R. Espinoza-González, F. Quero, KM. Batoo, First- principles investigation of the electronic structure, optical and thermodynamic properties on monolayer Sn0.5Ge0.5Se nanosheet: Physica E: Low-dimensional Systems and Nanostructures,126, 2021, p. 114454.
  5. Sekar, R. Sivasamy, B. Ricardo, P. Manidurai, Ultrasonically synthesized TiO2/ZnS nanocomposites to improve the efficiency of dye sensitized solar cells: Materials Science in Semiconductor Processing, 132, 2021, p.105917.
  6. H. Miah, M.B. Rahman, M. Nur-E-Alam, N. Das, NB. Soin, SFWM. Hatta, et al. Understanding the degradation factors, mechanism and initiatives for highly efficient perovskite . Solar Cells, 9, 2023, p. 20220047125.
  7. Brenes, D. Guo, A. Osherov, N. K. Noel, C. Eames, E. M. Hutter, S. K. Pathak, F.  Niroui, R. H.  Friend, M. S.  Islam, H. J.  Snaith, V. Bulović, T. J. Savenije, S. D. Stranks, Joule, 1, 2017,155.
  8. J. Yoo, G.  Seo, M. R.  Chua, T. G.  Park, Y.  Lu, F.  Rotermund, Y.-K.  Kim, C. S.  Moon, N. J.  Jeon, J.-P.  Correa-Baena, V.  Bulović, S. S. Shin, M. G. Bawendi, J. Seo, Nature, 590, 2021, p.587.
  9. H. Jung, N. J. Jeon, E. Y. Park, C. S. Moon, T. J. Shin, T.-Y. Yang, J. H. Noh, J. Seo, Nature, 567, 2019, 511.
  10. A. Green, E. D. Dunlop, J.  Hohl-Ebinger, M.  Yoshita, N. Kopidakis, X. Hao, Prog. Photovoltaics, 28, 2020, 629.
  11. A. Zafoschnig, S. Nold, J. C. Goldschmidt, IEEE :J. Photovoltaics, 10, 2020, 1632.
  12. Oxford PV hopes to deliver perovskite-silicon tandem solar cells within a year | Perovskite-Info, https://www.perovskite-info.com/oxford-pv-hopes-deliver-perovskite-silicon-tandem-solar-cells within-year (accessed: November 2020).
  13. Dubey, N. Adhikari, S. Mabrouk, F.  Wu, K.  Chen, S.  Yang, Q. Qiao, Mater. Chem. A, 6, 2018, 2406.
  14. Xie, M. Lira-Cantu, J. Phys. Energy, 2, 2020, 024008.
  15. Wang, N. Phung, D. D.  Girolamo, P.  Vivo, A.  Abate, Energy Environ. Sci., 12, 2019, 865.
  16. Chen, J. Song, X.  Dai, Y.  Liu, P. N.  Rudd, X.  Hong, J.  Huang, Adv. Mater., 31, 2019, 1902413.
  17. Phung, A. Abate, Small, 14, 2018, 1802573.
  18. Fischer, M. Woodhouse, S.  Herritsch, J.  Trube, International Technology Roadmap for Photovoltaic (ITRPV): VDMA E. V. Photovoltaic Equipment, Frankfurt, Germany 2020.
  19. Jeong, S. B. Choi, W. M.  Kim, J.-K.  Park, J.  Choi, I.  Kim, J. Jeong, Sci. Rep, 7, 2017, 15723.
  20. Hajijafarassar, F. Martinho, F. Stulen, S. Grini, S. López-Mariño, M. Espíndola-Rodríguez, M. Döbeli, S.  Canulescu, E.  Stamate, M.  Gansukh, S.  Engberg, A.  Crovetto, L.  Vines, J.  Schou, O. Hansen, Energy Mater. Sol. Cells, 207, 2020, 110334.
  21. I. Eya, N.Y. Dzade, Density functional theory insights into the structural, electronic, optical, surface, and band alignment properties of BaZrS3 chalcogenide perovskite for photovoltaics: ACS Appl. Energy Mater, 6 (11), 2023, 5729–5738.
  22. Hiroi, Y. Iwata, S.  Adachi, H.  Sugimoto, A.  Yamada, IEEE:J. Photovoltaics, 6, 2016, 760.
  23. H. Wong, A. Zakutayev, J. D.  Major, X.  Hao, A.  Walsh, T. K. Todorov, E. Saucedo, J. Phys. Energy, 1, 2019, 032001.
  24. Gharibzadeh, B. A. Nejand, M.  Jakoby, T.  Abzieher, D.  Hauschild, S. Moghadamzadeh, J. A.  Schwenzer, P.  Brenner, R.  Schmager, A. A.  Haghighirad, L.  Weinhardt, U.  Lemmer, B. S.  Richards, I. A.  Howard, U. W.  Paetzold, Adv. Energy Mater., 9, 2019, 1803699.
  25. Keller, K. V. Sopiha, O. Stolt, L. Stolt, C. Persson, J. J. S. Scragg, T. Törndahl, M. Edoff, Prog. Photovoltaics., 28, 2020, 237.
  26. Stolterfoht, P. Caprioglio, C. M.  Wolff, J. A.  Márquez, J.  Nordmann, S.  Zhang, D.  Rothhardt, U.  Hörmann, Y.  Amir, A.  Redinger, L.  Kegelmann, F.  Zu, S.  Albrecht, N.  Koch, T.  Kirchartz, M.  Saliba, T.  Unold, D.  Neher, Energy Environ. Sci.,12, 2019, 2778.
  27. Swarnkar, W. J. Mir, R. Chakraborty, M.  Jagadeeswararao, T. Sheikh, A. Nag, Mater., 31, 2019, 565.
  28. Khalid, T.K. Mallick, Stability and performance enhancement of perovskite solar cells: a review: Energies, 16 (10), 2023, 4031.
  29. Nishigaki, T. Nagai, M.  Nishiwaki, T.  Aizawa, M.  Kozawa, K.  Hanzawa, Y.  Kato, H.  Sai, H.  Hiramatsu, H.  Hosono, H. Fujiwara, Sol. RRL, 4, 2020, 1900555.
  30. Hanzawa, S. Innura, H. Hiramatsu, H. Hosono, J. Am. Chem. Soc., 141, 2019, 5343.
  31. Gao, K. Huang, C. Long, Y. Ding, J. Chang, D. Zhang, L. Etgar, M. Liu, J. Zhang, J. Yang, Flexible perovskite solar cells: From materials and device architectures to applications: ACS Energy Lett.,7 (4), 2022, 1412–1445.
  32. Crovetto, R. Nielsen, M. Pandey, L.  Watts, J. G.  Labram, M.  Geisler, N.  Stenger, K. W.  Jacobsen, O.  Hansen, B.  Seger, I. Chorkendorff, P. C. K. Vesborg, Mater., 31, 2019, 3359.
  33. Z. Rahman, S.S. Hasan, N. Absar, M.S. Akter, M.A. Hasan, M.Z. Hasan, M.A.K. Zilani, M.A. Islam, DFT based computational investigations of the physical properties of Chalcogenide Perovskites CsXS3 (X=P, Ta) for Optoelectronic and Photovoltaic Applications: Computational Condensed Matter, 2024, https://doi.org/10.1016/j.cocom.2024.e00964.
  34. Niu, G. Joe, H. Zhao, Y. Zhou, T. Orvis, H. Huyan, J. Salman, K. Mahalingam, B. Urwin, J. Wu, Y. Liu, T. E. Tiwald, S. B. Cronin, B. M.  Howe, M.  Mecklenburg, R.  Haiges, D. J.  Singh, H.  Wang, M. A. Kats, J. Ravichandran, Nat. Photonics, 12, 2018, 392.
  35. Z. Qamar, Z. Khalid, R. Shahid, W.C. Tsoi, Y.K. Mishra, A.K.K. Kyaw, M. A. Saeed, Advancement in indoor energy harvesting through flexible perovskite photovoltaics for self-powered IoT applications: Nano Energy, 129, 2024, 109994.
  36. Wu, G. Xu, J. Xi, Y. Shen, X. Wu, X. Tang, J. Ding, H. Yang, Q. Cheng, Z. Chen, In situ crosslinking-assisted perovskite grain growth for mechanically robust flexible perovskite solar cells with 23.4% efficiency:Joule, 7 (2), 2023, 398–415.
  37. Srivishnu, M.N. Rajesh, S. Prasanthkumar, L. Giribabu, Photovoltaics for indoor applications: Progress, challenges and perspectives: Sol. Energy 2023 264 112057.
  38. Li, H. Sun, D. Dou, S. Gan, L. Li, Bipolar pseudohalide ammonium salts bridged perovskite buried interface toward efficient indoor photovoltaics: Energy Mater, 24, 2024 2401883.
  39. G. Njema, J.K. Kibet, S.M. Ngari, A review of interface engineering characteristics for high performance perovskite solar cells:Meas. Energy, (100005), 2024.
  40. Perera, H. Hui, C.  Zhao, H.  Xue, F.  Sun, C.  Deng, N.  Gross, C. Milleville, X. Xu, D. F. Watson, B. Weinstein, Y.-Y. Sun, S. Zhang, H. Zeng, Nano Energy, 22, 2016, 129.
  41. Comparotto, A. Davydova, T. Ericson, L.  Riekehr, M. V.  Moro, T. Kubart, J. Scragg, ACS Energy Mater., 3, 2020, 2762.
  42. Niu, H. Huyan, Y. Liu, M. Yeung, K. Ye, L. Blankemeier, T. Orvis, D. Sarkar, D. J. Singh, R.  Kapadia, J.  Ravichandran, Adv. Mater.,29, 2017, 1604733.
  43. Wei, H. Hui, C. Zhao, C. Deng, M. Han, Z. Yu, A. Sheng, P. Roy, A. Chen, J. Lin, D. F. Watson, Y.-Y. Sun, T. Thomay, S. Yang, Q. Jia, S. Zhang, H. Zeng, Nano Energy, 68, 2020, 104317.
  44. Wei, H. Hui, S. Perera, A. Sheng, D. F. Watson, Y.-Y. Sun, Q. Jia, S. Zhang, H. Zeng, ACS Omega, 5, 2020, 19.
  45. Gupta, D. Ghoshal, A.  Yoshimura, S.  Basu, P. K.  Chow, A. S. Lakhnot, J. Pandey, J. M. Warrender, H. Efstathiadis, A. Soni, E.  Osei-Agyemang, G.  Balasubramanian, S.  Zhang, S.-F.  Shi, T.-M.  Lu, V.  Meunier, N.  Koratkar, Adv. Funct. Mater., 0, 2020, 2001387.
  46. G. Njema, J.K. Kibet, S.M. Ngari, A review of chalcogenide-based perovskites as the next novel materials: Solar cell and optoelectronic applications, catalysis and future perspectives: Next Nanotechnology, 7, 2025, 100102. https://doi.org/10.1016/j.nxnano.2024.100102.
  47. Shaili, M. Beraich, A.  El hat, M.  Ouafi, E.  mehdi Salmani, R.  Essajai, W.  Battal, M.  Rouchdi, M.  Taibi, N.  Hassanain, A. Mzerd, J. Alloys Compd., 851, 2021, 156790.
  48. A. Moroz, C. Bauer, L.  Williams, A.  Olvera, J.  Casamento, A. A.  Page, T. P.  Bailey, A.  Weiland, S. S.  Stoyko, E.  Kioupakis, C. Uher, J. A. Aitken, P. F. P. Poudeu, Inorg. Chem., 57, 2018, 7402.
  49. Y.D. Maulida, S. Hartati, Y. Firdaus, A.T. Hidayat, L.J. Diguna, D. Kowal, A. Bruno, D. Cortecchia, A. Arramel, M.D. Birowosuto, Recent developments in low-dimensional heterostructures of halide perovskites and metal chalcogenides as emergent materials: Fundamental, implementation, and outlook: Chem. Phys. Rev. 5 (1), 2024.
  50. Liu, T. Yang, W. Cai, Y. Wang, X. Chen, S. Wang, W. Huang, Y. Du, N. Wu, Z. Wang, Flexible indoor perovskite solar cells by in situ bottom-up crystallization modulation and interfacial passivation: Mater., 23, 2024 , 2311562.
  51. Wang, Y. Han, P.  Liu, Y.  Li, S.  Xu, J.  Xiang, R. N.  Ali, F.  Su, H. Zeng, J. Jiang, B. Xiang, Appl. Surf. Sci., 499, 2020, 143932.
  52. Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Rev. Lett., 100, 2008, 136406.
  53. Forge, PS library. http://qe-forge.org/gf/project/pslibrary/
  54. Kuhar, A. Crovetto, M.  Pandey, K. S.  Thygesen, B.  Seger, P. C. K.  Vesborg, O.  Hansen, I.  Chorkendorff, K. W.  Jacobsen, Energy Environ. Sci., 10, 2017, 2579.
  55. Sheng, S. Wang, H. Zhu, Z. Liu and G. Zhou, Computational applications for the discovery of novel antiperovskites andchalcogenide perovskites: a review. Front.Chem, 12, 2024, 1468434 doi: 10.3389/fchem.2024.1468434.
  56. Priyadarshini, S. Mansingh, K.K. Das, R. Mohanty, K. Parida, G. Barik, K. Parida, Single crystal perovskite an emerging photocatalytic and storage material: synthesis to applications via theoretical insight: Phys. Rep. 2024 1061 1–53.
  57. Xie, W. Que, Solvothermal synthesis of SnO2 nanoparticles for perovskite solar cells application, Front. Chem, 12, 2024, 1361275.
  58. Ma, S. Sansoni, T. Gatti, P. Fino, G. Liu, F. Lamberti, Research progress on homogeneous fabrication of large-area perovskite films by spray coating: Crystals, 13 (2), 2023, 216.
  59. Wang, G. Liang, S. Jiang, F. Wang, H. Li, B. Li, H. Zhu, A. Lu, W. Gong, Understanding the environmental impact and risks of organic additives in plastics: a call for sustained research and sustainable solutions: Emerg. Contam. 2024 100388.
  60. Kokalj, Mater. Sci., 28, 2003, 155–168.
  61. B. Jin, E. S. Choi, T. E.  Albrecht-Schmitt, J. Solid State Chem., 182, 2009, 1075.
  62. Zhu, R. Zhang, M. Li, X. Gao, C. Zheng, R. Chen, et al. PEDOT:PSS/CuCl composite hole transporting layer for enhancing the performance of 2D Ruddlesden- popper perovskite solar cell:, The Journal of Physical Chemistry Letters., 13, 2022, p. 6101-6109.
  63. Heo, L. Yu, E.  Altschul, B. E.  Waters, J. F.  Wager, A.  Zunger, D. A. Keszler, Chem. Mater., 29, 2017, 2594.
  64. -Y. Tang, C.-C. Er, X.Y. Kong, B.-J. Ng, Y.-H. Chew, L.-L. Tan, A.R. Mohamed, S.- P. Chai, Two-dimensional interface engineering of g-C3N4/g-C3N4 nanohybrid: synergy between isotype and pn heterojunctions for highly efficient photocatalytic CO2 reduction, Chem. Eng. J. 2023 466 143287.
  65. F.M. Noh, N.A. Arzaee, C.C. Fat, S.K. Tiong, M.A.M. Teridi, A.W.M. Zuhdi, Perovskite/CIGS Tandem solar cells: progressive advances from technical perspectives: Mat. Today Eergy, 2023, (101473).
  66. Srivastava, R.K. Shukla, P. Srivastava, P. Chandra, N. Kumar, Chalcogenides: bulk and thin films, Mater. Sci. A Field Divers: Appl., 1 (25), 2023, 1–25.
  67. Xu Y-F, Wu W-Q, Rao H-S, Chen H-Y, Kuang D-B, Su C-Y, CdS/CdSe co-sensitized TiO2 nanowire-coated hollow spheres exceeding 6% photovoltaic performance: Nano Energy, 11, 2015, p. 621-630.
  68. Saiduzzaman, T. Ahmed, K.M. Hossain, A. Biswas, S. Mitro, A. Sultana, M. S. Alam, S. Ahmad, Band gap tuning of non-toxic Sr-based perovskites CsSrX3 (X= Cl, Br) under pressure for improved optoelectronic applications: Mat. Today Commun., 34, 2023, 105188.
  69. Z. Abbasi, A.U. Rehman, Z. Khan, O.U. Rehman, M.A. Saeed, Analyzing the compatibility and optimization of organic and Al2CdX4 chalcogenides materials as charge transport layers for planar and inverted MASnI3 perovskites: Opt. Mater., 154, 2024, 115789.
  70. Tundwal, H. Kumar, B.J. Binoj, R. Sharma, G. Kumar, R. Kumari, A. Dhayal, A. Yadav, D. Singh, P. Kumar, Developments in conducting polymer-, metal oxide and carbon nanotube-based composite electrode materials for supercapacitors: a review: RSC Adv., 14 (14), 2024, 9406–9439.
  71. G-X. Wang, X-X. Ren, J-J. Wei, A-J. Wang, T. Zhao, J-J. Feng, et al. Ultrasensitive PEC cytosensor for breast cancer cells detection and inhibitor screening based on plum-branched CdS/Bi2S3 heterostructures: Bioelectrochemistry, 152, 2023, p. 108442.
  72. G. Njema, J.K. Kibet. A review of the technological advances in the design of highly efficient perovskite solar cells: International Journal of Photoenergy, 2023, 2023, p. 3801813.
  73. Livingston, AGS. Raj, RT. Prabu, A. Kumar, Computational analysis of FeS2 material for solar cell application: Optical and Quantum Electronics, 55, 2023, p. 244.
  74. Razamin, HJ. Woo, T. Winie, Comparative study of nickel selenide, iron selenide and platinum on triiodide reduction for dye-sensitized solar cells: Optical Materials: X, 13, 2022, p. 100119.
  75. Genshun, Y. Shi, P. Fuguo, H. Chengjian, Q. Minghao, L. Junxiong, et al. Silicon heterojunction solar cells with up to 26.81% efficiency achieved by electrically optimized nanocrystalline-silicon hole contact layers: Nature Energy, 13, 2023, p. 789- 799.
  76. Machín, F. Marquez, Advancements in photovoltaic cell materials: silicon, organic, and perovskite solar cells:Materials, 17 (5), 2024, 1165.
  77. Xu, M. Zhang, Z. Li, X. Yang, R. Zhu, Challenges and perspectives toward future wide-bandgap mixed-halide perovskite photovoltaics: Energy Mater, 13 (13), 2023, 2203911.
  78. Verma, GP. Mishra , Analytical model of InP QWs for efficiency improvement in GaInP/Si dual junction solar cell: Physica Status Solidi A, 220, 2023, p. 2200500.
  79. Zhu, Y. Wang, X. Pan, H. Akiyama, Theoretical modeling and ultra-thin design for multi-junction solar cells with a light-trapping front surface and its application to InGaP/GaAs/InGaAs 3-junction: Optics Express, 30, 2022, p. 35202-35218.
  80. Fadila, M. Ameri, D. Bensaid, M. Noureddine, I. Ameri, S. Mesbah, & Y. Al-Douri, Journal of Magnetism and Magnetic Materials, 448, 2018, 208–220. doi:10.1016/j.jmmm.2017.06.0.
  81. Xue, J. Wang, Q. Wu, Zhang, R. Dai, B. Tian et al, Results in Physics, 19, 2020, 103596
  82. Palumbo and A. Dal Corso, Physica Status Solidi B 254, 2017, 1700101.
  83. Ye, H. Sun, H. Gao, L. Sun, J. Guo, Y. Jiang, C. Wu, S. Zheng, Intrinsic activity regulation of metal chalcogenide electrocatalysts for lithium–sulfur batteries: Energy Storage Mater., 60, 2023, 102855.
  84. Khatoon, S.K. Yadav, V. Chakravorty, J. Singh, R.B. Singh, M.S. Hasnain, S. M. Hasnain, Perovskite solar cell’s efficiency, stability and scalability: a review: Mater. Sci. Energy Technol., 6, 2023, 437–459.
  85. Priyadarshini, S. Mansingh, K.K. Das, R. Mohanty, K. Parida, G. Barik, K. Parida, Single crystal perovskite an emerging photocatalytic and storage material: synthesis to applications via theoretical insight: Phys. Rep., 1061, 2024, 1–53.
  86. O Balogun, M.A Olopade, O.O Oyebola, & A. D Adewoyin, Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 273, 2021, 115405. https://doi.org/10.1016/j.mseb.2021.115405.
  87. Rahul Yadav, Anshuman Srivastava, Jisha Annie Abraham, Ramesh Sharma, Sajad Ahmad Dar, Materials Science and Engineering: B Volume, 283, 2022, 0921-5107, https://doi.org/10.1016/j.mseb.2022.115781.