A BIBLIOMETRIC ANALYSIS OF COPPER AND ANTIMICROBIAL COPPER COATINGS
European Journal of Materials Science and Engineering, Volume 9, Issue 2, 2024
PDF Full Article, DOI: 10.36868/ejmse.2024.09.02.109, pp. 109-124
Online First, Accepted date: May 15, 2024, Publication date: June 20, 2024
Iulian SPANU1, Alina ROBU1,*, Aurora ANTONIAC1, Iuliana CORNESCHI1, Veronica MANESCU (PALTANEA)1, Larisa POPESCU1, Dragos ALEXANDRESCU1
1 Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei Street, District 6, 060042 Bucharest, Romania
* Corresponding author: alinarobu2021@gmail.com
Abstract
Along with technological development, scientific literature has grown exponentially. Although the data resources are open access, filtering a large amount of information remains a significant problem. This paper aims to search and analyze the specialized literature on copper coatings and antimicrobial copper coatings. The aim was to extract the data from the Web of Science, which is the largest database for scientific literature. We used the VOSviewer software for analyzing the raw data that we collected from the Web of Science Core Collection. Within this domain, visualizing networks of key terms from published works holds significant importance. Thus, the objective of this research is to showcase advancements and research focuses within antimicrobial copper coatings, particularly those employed in high-traffic areas such as public transportation, airports, educational institutions, and notably in hospitals worldwide. This entailed two sets of keyword analyses: one focused on the overarching term describing the copper coatings field, namely “copper coatings,” and the other aimed at fulfilling the primary study goal, using the keywords “antimicrobial copper” in the search. When searching for “copper coatings” OR “copper-coat*” in all WOS-indexed databases at the time of the inquiry, 9,302 results were found, according to the Web of Science database. When searching for “antimicrobial copper” OR “antimicrob* copper*” in the Web of Science Core Collection, 71 results were found. Through processing these findings with VOSviewer software, distinct clusters of keywords were generated, with their significance filtered based on various criteria as outlined in each map’s description. This study presents future avenues for research based on the findings.
Keywords: Copper coatings; bibliometric analysis; antimicrobial copper; database; web of science
References:
[1] Konieczny J.; Rdzawski Z., Antibacterial Properties of Copper and Its Alloys. Archives of Materials Science and Engineering, 56, 2012, 53–60.
[2] Singh H.; Sidhu T.S.; Kalsi S.B.S.; Karthikeyan J., Development of Cold Spray from Innovation to Emerging Future Coating Technology. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 35, 2013, 231–245.
[3] Istrate B.; Rau J. V.; Munteanu C.; Antoniac I. V.; Saceleanu V., Properties and in Vitro Assessment of ZrO2-Based Coatings Obtained by Atmospheric Plasma Jet Spraying on Biodegradable Mg-Ca and Mg-Ca-Zr Alloys. Ceram Int, 46, 2020, 15897–15906, doi:10.1016/j.ceramint.2020.03.138.
[4] Cheryl A. Deckert Electroless Copper Plating A Review: Part I. PLATING & SURFACE FINISHING, 1995, 48-55
[5] Vranceanu, D.M.; Ungureanu, E.; Ionescu, I.C.; Parau, A.C.; Kiss, A.E.; Vladescu, A.; Cotrut, C.M. Electrochemical Surface Biofunctionalization of Titanium through Growth of TiO2 Nanotubes and Deposition of Zn Doped Hydroxyapatite. Coatings, 12, 2022, 69.
[6] Ungureanu, E.; Vladescu (Dragomir), A.; Parau, A.C.; Mitran, V.; Cimpean, A.; Tarcolea, M.; Vranceanu, D.M.; Cotrut, C.M. In Vitro Evaluation of Ag- and Sr-Doped Hydroxyapatite Coatings for Medical Applications. Materials, 16, 2023, 5428.
[7] Ghosh, S. Electroless Copper Deposition: A Critical Review. Thin Solid Films, 669, 2019, 641–658.
[8] Baptista, A.; Silva, F.; Porteiro, J.; Míguez, J.; Pinto, G. Sputtering Physical Vapour Deposition (PVD) Coatings: A Critical Review on Process Improvement and Market Trend Demands. Coatings, 8, 2018, 402.
[9] Matei, A.A.; Pencea, I.; Stanciu, S.G.; Hristu, R.; Antoniac, I.; Ciovica (Coman), E.; Sfat, C.E.; Stanciu, G.A. Structural Characterization and Adhesion Appraisal of TiN and TiCN Coatings Deposited by CAE-PVD Technique on a New Carbide Composite Cutting Tool. J Adhes Sci Technol, 29, 2015, 2576–2589.
[10] Vladescu, A.; Badea, M.; Padmanabhan, S.C.; Paraschiv, G.; Floroian, L.; Gaman, L.; Morris, M.A.; Marty, J.-L.; Cotrut, C.M. Nanomaterials for Medical Applications and Their Antimicrobial Advantages. In Materials for Biomedical Engineering; Elsevier, 2019; pp. 409–431.
[11] Kelly, P.J.; Arnell, R.D. Magnetron Sputtering: A Review of Recent Developments and Applications. Vacuum 2000, 56, 159–172.
[12] Allegranzi, B.; Nejad, B.; Graafmans, W.; Phd, A.; Donaldson, L.; Pittet, D.; Allegranzi, B.; Nejad, S.B.; Combescure, C.; Graafmans, W.; et al. Articles Burden of Endemic Health-Care-Associated Infection in Developing Countries: Systematic Review and Meta-Analysis. Lancet, 377, 2011, 228–269.
[13] Montero, D.A.; Arellano, C.; Pardo, M.; Vera, R.; Gálvez, R.; Cifuentes, M.; Berasain, M.A.; Gómez, M.; Ramírez, C.; Vidal, R.M. Antimicrobial Properties of a Novel Copper-Based Composite Coating with Potential for Use in Healthcare Facilities 06 Biological Sciences 0605 Microbiology. Antimicrob Resist Infect Control, 8, 2019.
[14] Shafaghi, R. Biocidal and Sporicidal Efficacy of Thermal Spray Copper Alloy Coating with Varying Degrees of Roughness; 2016.
[15] Dawod, N.; Antoniac, A.; Antoniac, I.; Miculescu, M.; Robu, A.; Ungureanu, E.; Agop-Forna, D.; Dana Cârstoc, I.; Dura, H.; Dragomir, B.R. Corrosion Behavior and Microstructural Analysis of Some Co-Cr Alloys Used for Metal-Ceramic Restorations in Dentistry. UPB Bull., Series B, 85, 2023, 317-330.
[16] Dawod, N.; Stoia, D.I.; Focșăneanu, S.; Antoniac, A.; Robu, A.; Dura, H.; Dana Cârstoc, I.; Dragomir, B.R. Sheat Stress Analysis by Finite Elements of a Metal-Ceramic Dental Bridge on a CoCr Alloy Support; UPB Bull., Series B, Vol. 85, 2023, 3, 191-206.
[17] Cimpean, S.I.; Burtea, A.L.C.; Chiorean, R.S.; Dudescu, M.C.; Antoniac, A.; Robu, A.; Campian, R.S.; Timis, L.I. Evaluation of Bond Strength of Four Different Root Canal Sealers. Materials, 15, 2022.
[18] Gheorghiță, D.; Moldovan, H.; Robu, A.; Bița, A.-I.; Grosu, E.; Antoniac, A.; Corneschi, I.; Antoniac, I.; Bodog, A.D.; Băcilă, C.I. Chitosan-Based Biomaterials for Hemostatic Applications: A Review of Recent Advances. Int J Mol Sci, 24, 2023, 10540.
[19] Streza, A.; Antoniac, A.; Manescu, V.; Paltanea, G.; Robu, A.; Dura, H.; Verestiuc, L.; Stanica, E.; Voicu, S.I.; Antoniac, I.; et al. Effect of Filler Types on Cellulose-Acetate-Based Composite Used as Coatings for Biodegradable Magnesium Implants for Trauma. Materials, 16, 2023.
[20] Robu, A.; Antoniac, A.; Ciocoiu, R.; Grosu, E.; Rau, J. V.; Fosca, M.; Krasnyuk, I.I.; Pircalabioru, G.G.; Manescu (Paltanea), V.; Antoniac, I.; et al. Effect of the Antimicrobial Agents Peppermint Essential Oil and Silver Nanoparticles on Bone Cement Properties. Biomimetics, 7, 2022, 137.
[21] Hajipour, M.J.; Fromm, K.M.; Akbar Ashkarran, A.; Jimenez de Aberasturi, D.; Larramendi, I.R. de; Rojo, T.; Serpooshan, V.; Parak, W.J.; Mahmoudi, M. Antibacterial Properties of Nanoparticles. Trends Biotechnol, 30, 2012, 499–511.
[22] Cavalu, S.; Antoniac, I.V.; Mohan, A.; Bodog, F.; Doicin, C.; Mates, I.; Ulmeanu, M.; Murzac, R.; Semenescu, A. Nanoparticles and Nanostructured Surface Fabrication for Innovative Cranial and Maxillofacial Surgery. Materials, 13, 2020, 5391.
[23] Corobea, M.S.; Albu, M.G.; Ion, R.; Cimpean, A.; Miculescu, F.; Antoniac, I.V.; Raditoiu, V.; Sirbu, I.; Stoenescu, M.; Voicu, S.I.; et al. Modification of Titanium Surface with Collagen and Doxycycline as a New Approach in Dental Implants. J Adhes Sci Technol, 29, 2015, 2537–2550.
[24] Villapún, V.; Dover, L.; Cross, A.; González, S. Antibacterial Metallic Touch Surfaces. Materials, 9, 2016, 736.
[25] Cavalu, S.; Antoniac, I.V.; Fritea, L.; Mates, I.M.; Milea, C.; Laslo, V.; Vicas, S.; Mohan, A. Surface Modifications of the Titanium Mesh for Cranioplasty Using Selenium Nanoparticles Coating. J Adhes Sci Technol 2018, 32, 2509–2522.
[26] Frei, A.; Verderosa, A.D.; Elliott, A.G.; Zuegg, J.; Blaskovich, M.A.T. Metals to Combat Antimicrobial Resistance. Nat Rev Chem, 7, 2023, 202–224.
[27] Zhang, N.; Wang, P.; Miao, T.; Chan, P.-T.; Jia, W.; Zhao, P.; Su, B.; Chen, X.; Li, Y. Real Human Surface Touch Behavior Based Quantitative Analysis on Infection Spread via Fomite Route in an Office. Build Environ, 191, 2021, 107578.
[28] Https://Www.Copper.Org.
[29] Schmidt, M.G.; Attaway, H.H.; Sharpe, P.A.; John, J.; Sepkowitz, K.A.; Morgan, A.; Fairey, S.E.; Singh, S.; Steed, L.L.; Cantey, J.R.; et al. Sustained Reduction of Microbial Burden on Common Hospital Surfaces through Introduction of Copper. J Clin Microbiol 50, 2012, 2217–2223.
[30] Coppin, J.D.; Villamaria, F.C.; Williams, M.D.; Copeland, L.A.; Zeber, J.E.; Jinadatha, C. Self-Sanitizing Copper-Impregnated Surfaces for Bioburden Reduction in Patient Rooms. Am J Infect Control, 45, 2017, 692–694.
[31] Schmidt, M.G.; Tuuri, R.E.; Dharsee, A.; Attaway, H.H.; Fairey, S.E.; Borg, K.T.; Salgado, C.D.; Hirsch, B.E. Antimicrobial Copper Alloys Decreased Bacteria on Stethoscope Surfaces. Am J Infect Control, 45, 2017, 642–647.
[32] Ghezzi, D.; Sassoni, E.; Boi, M.; Montesissa, M.; Baldini, N.; Graziani, G.; Cappelletti, M. Antibacterial and Antibiofilm Activity of Nanostructured Copper Films Prepared by Ionized Jet Deposition. Antibiotics, 12, 2022, 55.
[33] Ma, X.; Zhou, S.; Xu, X.; Du, Q. Copper-Containing Nanoparticles: Mechanism of Antimicrobial Effect and Application in Dentistry-a Narrative Review. Front Surg, 9. 2022.
[34] Warnes, S.L.; Green, S.M.; Michels, H.T.; Keevil, C.W. Biocidal Efficacy of Copper Alloys against Pathogenic Enterococci Involves Degradation of Genomic and Plasmid DNAs. Appl Environ Microbiol, 76, 2010, 5390–5401.
[35] Warnes, S.L.; Caves, V.; Keevil, C.W. Mechanism of Copper Surface Toxicity in Escherichia Coli O157:H7 and Salmonella Involves Immediate Membrane Depolarization Followed by Slower Rate of DNA Destruction Which Differs from That Observed for Gram‐positive Bacteria. Environ Microbiol, 14, 2012, 1730–1743.
[36] Santo, C.E.; Quaranta, D.; Grass, G. Antimicrobial Metallic Copper Surfaces Kill Staphylococcus Haemolyticus via Membrane Damage. Microbiologyopen, 1, 2012, 46–52.
[37] Santo, C.E.; Lam, E.W.; Elowsky, C.G.; Quaranta, D.; Domaille, D.W.; Chang, C.J.; Grass, G. Bacterial Killing by Dry Metallic Copper Surfaces. Appl Environ Microbiol, 77, 2011, 794–802.
[38] Govind, V.; Bharadwaj, S.; Sai Ganesh, M.R.; Vishnu, J.; Shankar, K. V.; Shankar, B.; Rajesh, R. Antiviral Properties of Copper and Its Alloys to Inactivate Covid-19 Virus: A Review. BioMetals, 34, 2021, 1217–1235.
[39] Cavalcanti Luna, M.A.; Vieira, E.R.; Okada, K.; Campos-Takaki, G.M.; Nascimento, A.E. do Copper-Induced Adaptation, Oxidative Stress and Its Tolerance in Aspergillus Niger UCP1261. Electronic Journal of Biotechnology, 18, 2015, 418–427.
[40] Zhang, L.; Yang, Z.; Yang, M.; Yang, F.; Wang, G.; Liu, D.; Li, X.; Yang, L.; Wang, Z. Copper-Induced Oxidative Stress, Transcriptome Changes, Intestinal Microbiota, and Histopathology of Common Carp (Cyprinus Carpio). Ecotoxicol Environ Saf, 246, 2022, 114136.
[41] Yang, F.; Pei, R.; Zhang, Z.; Liao, J.; Yu, W.; Qiao, N.; Han, Q.; Li, Y.; Hu, L.; Guo, J.; et al. Copper Induces Oxidative Stress and Apoptosis through Mitochondria-Mediated Pathway in Chicken Hepatocytes. Toxicology in Vitro, 54, 2019, 310–316.
[42] Salah, I.; Parkin, I.P.; Allan, E. Copper as an Antimicrobial Agent: Recent Advances. RSC Adv, 11, 2021, 18179–18186.
[43] Fowler, L.; Engqvist, H.; Öhman-Mägi, C. Effect of Copper Ion Concentration on Bacteria and Cells. Materials, 12, 2019, 3798.
[44] Karlsson, H.L.; Cronholm, P.; Hedberg, Y.; Tornberg, M.; De Battice, L.; Svedhem, S.; Wallinder, I.O. Cell Membrane Damage and Protein Interaction Induced by Copper Containing Nanoparticles—Importance of the Metal Release Process. Toxicology, 313, 2013, 59–69.
[45] John, R.; Mathew, J.; Mathew, A.; Aravindakumar, C.T.; Aravind, U.K. Probing the Role of Cu(II) Ions on Protein Aggregation Using Two Model Proteins. ACS Omega, 6, 2021 35559–35571.
[46] Chen, L.; Min, J.; Wang, F. Copper Homeostasis and Cuproptosis in Health and Disease. Signal Transduct Target Ther, 7, 2022, 378.
[47] Rosenberg, M.; Ilic, K.; Juganson, K.; Ivask, A.; Ahonen, M.; Vrček, I.V.; Kahru, A. Potential Ecotoxicological Effects of Antimicrobial Surface Coatings: A Literature Survey Backed up by Analysis of Market Reports. PeerJ 2019, 2019.
[48] Mebane, C.A.; Schmidt, T.S.; Miller, J.L.; Balistrieri, L.S. Bioaccumulation and Toxicity of Cadmium, Copper, Nickel, and Zinc and Their Mixtures to Aquatic Insect Communities. Environ Toxicol Chem, 39, 2020, 812–833.
[49] Leblanc, M.; Morales, J.A.; Borrego, J.; Elbaz-Poulichet, F. 4,500-Year-Old Mining Pollution in Southwestern Spain: Long-Term Implications for Modern Mining Pollution. Economic Geology, 95, 2000, 655–662.
[50] Ho, Y.-S.; Fahad Halim, A.F.M.; Islam, M.T. The Trend of Bacterial Nanocellulose Research Published in the Science Citation Index Expanded From 2005 to 2020: A Bibliometric Analysis. Front Bioeng Biotechnol 2022, 9.
[51] Khan, S.; Rana, S.; Goel, A. Presence of Digital Sources in International Marketing: A Review of Literature Using Leximancer. International Journal of Technology Marketing 2022, 16, 246.
[52] van Eck, N.J.; Waltman, L. Software Survey: VOSviewer, a Computer Program for Bibliometric Mapping. Scientometrics 2010, 84, 523–538.
[53] Burduhos-Nergiș, D.-D.; Vizureanu, P.; Baltatu, M.-S.; Sandu, A.-V.; Burduhos-Nergiș, D.-P. A Bibliometric Analysis of Research on Fiber Reinforced Geopolymer Composites. Bull., Series B, 85, 2023.
[54] Han, M.-C.; Cai, S.-Z.; Wang, J.; He, H.-W. Single-Side Superhydrophobicity in Si3N4-Doped and SiO2-Treated Polypropylene Nonwoven Webs with Antibacterial Activity. Polymers (Basel) 2022, 14, 2952.
[55] Borregan-Alvarado, J.; Alvarez-Meaza, I.; Cilleruelo-Carrasco, E.; Garechana-Anacabe, G. A Bibliometric Analysis in Industry 4.0 and Advanced Manufacturing: What about the Sustainable Supply Chain? Sustainability 2020, 12, 7840.
[56] Yafetto, L. Application of Solid-State Fermentation by Microbial Biotechnology for Bioprocessing of Agro-Industrial Wastes from 1970 to 2020: A Review and Bibliometric Analysis. Heliyon, 8, 2022, e09173.