ejmse.2025.10.01.023

CREEP BEHAVIOR OF AN EQUIMOLAR CONIFEMNCR HIGH ENTROPY ALLOY AT 1000°C AND BEYOND

European Journal of Materials Science and Engineering, Volume 10, Issue 1, 2025
PDF Full Article,  DOI: 10.36868/ejmse.2025.10.01.023,   pp. 23-36
Published: March 20, 2025

Patrice BERTHOD1,*
1 Faculté des Sciences et Technologies & Institut Jean Lamour,
Université de Lorraine, 2 allée André Guinier 54000 Nancy, France

* Corresponding author: patrice.berthod@univ-lorraine.fr

Abstract

The Cantor alloy is one of the earliest high entropy alloys to appear. In contrast with its properties at low and cryogenic temperatures, its creep behavior at close to 1000°C is not yet very known. This work aims to explore the behavior of a cast equimolar CoNiFeMnCr alloy in three points bending creep at 1000 and 1100°C for two levels of loading (inducing 10 and 30 MPa tensile stress). The deformation rate increases with temperature and with stress. Duration to test end can reach 100 hours and more for 10 MPa and 50h or much less for 30 MPa. In addition, significant oxidation of the samples was noticed by oxygen impurities in the protective argon atmosphere. These results demonstrate that, in its present state, this alloy is not suitable for service at so high temperature. It must be mechanically strengthened, by precipitates for instance, and its oxidation resistance must be improved.

Keywords: equimolar CoNiFeMnCr alloy, high temperature creep, high temperature oxidation.

References:

  1. Donachie, M. J. and Donachie, S. J. Eds., Superalloys: a technical guide (2nd ed.), United States, ASM International, 2002
  2.  Moroni, M., Rossetti, P., Naitza, S., Magnani, L., Ruggieri, G., Aquino, A., Tartarotti, P., Franklin, A., Ferrari, E., Castelli, D., Oggiano, G. and Secchi, F. Factors controlling hydrothermal nickel and cobalt mineralization—Some suggestions from historical ore deposits in Italy. Minerals, 9, 429, pp. 1-41, 2019. http://dx.doi.org/10.3390/min9070429
  3.  Du, D., Yan, S., Yang, F., Zhu, Z., Song, Q. and Yang, Q. Kriging interpolation for evaluating the mineral resources of cobalt-rich crusts on Magellan seamounts. Minerals, 8, 374, pp. 1-15, 2018.  http://dx.doi.org/10.3390/min8090374
  4. Dabrowa, J., Danielewski, M. State-of-the-art diffusion studies in the high entropy alloys. Metals, 10, pp. 1–44, 2020. https://doi.org/10.3390/met10030347
  5. Cantor, B., Chang, I. T., Knight, P., Vincent, A. J. Microstructural development in equiatomic multicomponent alloys. Materials Science & Engineering A, 375-377, pp. 213–218, 2004. https://doi.org/10.1016/j.msea.2003.10.257
  6. Yeh, J. W., Chen, S. K., Lin, S. J., Gan, J. Y., Chin, T. S., Shun, T. T., Tsau, C. H. and Chang, S. Y. Microstructural development in equiatomic multicomponent alloys. Advanced Engineering Materials, 6, pp. 299–303, 2004. https://doi.org/10.1002/adem.200300567
  7.  Wang, Z., Guo S., Wang, Q., Liu, Z., Wang, J., Yang, Y. and Liu, C. T. Nanoindentation characterized initial creep behavior of a high-entropy-based alloy CoFeNi. Intermetallics, 53, pp. 183–186, 2014. http://dx.doi.org/10.1016/j.intermet.2014.05.007
  8.  Bahadur, F., Kumar, J., Gururaj, K., Kumar Yadav, M., Tan S., Pradeep, K. G., Gurao, N. P. and Biswas, K. Room temperature cyclic creep behaviour of equimolar CoCuFeMnNi high entropy alloy. Materials Science & Engineering A, 865, 144587, 2023. https://doi.org/10.1016/j.msea.2023.144587
  9. Tsao T. K., Yeh A. C., Kuo C. M., Kakehi K., Murakami H., Yeh J. W. and Jian S. R. The high temperature tensile and creep behaviors of high entropy superalloy. Scientific Reports, 7, 12658, 2017. https://doi.org/10.1038/s41598-017-13026-7
  10. Chen, S., Qiao, J., Diao, H., Yang, T., Poplawsky, J., Li, W., Meng, F., Tong, Y., Jiang, L., Liaw, P. K. and Gao, Y. Extraordinary creep resistance in a non-equiatomic high-entropy alloy from the optimum solid-solution strengthening and stress-assisted precipitation process. Acta Materialia, 244, 118600, 2023. https://doi.org/10.1016/j.actamat.2022.118600
  11. Lee, D. H., Seok, M. Y., Zhao, Y., Choi, I. C., He, J., Lu, Z., Suh, J. Y., Ramamurty, U., Kawasaki, M., Langdon, T. G. and Jang, J. I. Spherical nanoindentation creep behavior of nanocrystalline and coarse-grained CoCrFeMnNi high-entropy alloys. Acta Materialia, 109, pp. 314–322, 2016. http://dx.doi.org/10.1016/j.actamat.2016.02.049
  12. Xu, Z., Zhang, H., Li, W., Mao, A., Wang, L., Song, G. and He, Y. Microstructure and nanoindentation creep behavior of CoCrFeMnNi high entropy alloy fabricated by selective laser melting. Additive Manufacturing, 28, pp. 766–771, 2019. https://doi.org/10.1016/j.addma.2019.06.012
  13. Kumar, J., Linda, A., Sadhasivam, M., Pradeep, K. G., Gurao, N. P. and Biswas, K. The effect of Al addition on solid solution strengthening in CoCrFeMnNi: Experiment and modelling. Acta Materialia, 238, 118208, 2022. https://doi.org/10.1016/j.actamat.2022.118208
  14. Jing, Q., Hu, L., Li, J., Xin, S., Huang, S. and Liu, L. Significant strength enhancement of high-entropy alloy via phase engineering and lattice distortion. Journal of Alloys and Compounds, 976, 172963, 2024. https://doi.org/10.1016/j.jallcom.2023.172963
  15. Shams, S. A. A., Jang, G., Won, J. W., Bae, J. W., Jin, H., Kim, H. S. and Lee, C. S. Low-cycle fatigue properties of CoCrFeMnNi high-entropy alloy compared with its conventional counterparts. Materials Science & Engineering A, 792, 139661, 2020. https://doi.org/10.1016/j.msea.2020.139661
  16. Hao, R., Wang, Z., Jin, X., Lan, A. and Qiao, J. A flow model in CoCrFeMnNi high-entropy alloys during high-temperature tension. Applied Physics Letters, 124, 101902, 2024. https://doi.org/10.1063/5.0191459
  17. Kim, Y. K., Lim, K. R. and Lee, K. A. Superior resistance to high–temperature creep in an additively manufactured precipitation–hardened CrMnFeCoNi high–entropy alloy nanocomposite. Materials & Design, 227, 111761, 2023. https://doi.org/10.1016/j.matdes.2023.111761
  18. Kim, Y. K., Yang, S. and Lee, K. A. Compressive creep behavior of selective laser melted CoCrFeMnNi high entropy alloy strengthened by in-situ formation of nano-oxides. Additive Manufacturing, 36, 101543, 2020. https://doi.org/10.1016/j.addma.2020.101543
  19. Rozman, K. A., Detrois, M., Liu, T., Gao, M. C., Jablonski, P. D. and Hawk, J. A. Long-term creep behavior of a CoCrFeNiMn high-entropy alloy. Journal of Materials Engineering and Performance, 29(9), pp. 5822-5839, 2020. https://doi.org/10.1007/s11665-020-05103-2
  20. Song, C., Li, G., Li, G., Zhang, G. and Cai, B. Tensile creep behavior and mechanism of CoCrFeMnNi high entropy alloy. Micron, 150, 103144, 2021. https://doi.org/10.1016/j.micron.2021.103144
  21. Lee, K. H., Hong, S. K. and Hong, S. I. Precipitation and decomposition in CoCrFeMnNi high entropy alloy at intermediate temperatures under creep conditions. Materialia, 8, 100445, 2019. https://doi.org/10.1016/j.mtla.2019.100445
  22. Jeong, H. T., Park, H. K., Park, K., Na, T. W. and Kim, W. J. High-temperature deformation mechanisms and processing maps of equiatomic CoCrFeMnNi high-entropy alloy. Materials Science & Engineering A, 756, pp. 528–537, 2019. https://doi.org/10.1016/j.msea.2019.04.057
  23. Gholizadeh, R., Yoshida, S., Bai, Y., Kurokawa, S., Shibata, A. and Tsuji, N. Global understanding of deformation behavior in CoCrFeMnNi high entropy alloy under high-strain torsion deformation at a wide range of elevated temperatures. Acta Materialia, 243, 118514, 2023. https://doi.org/10.1016/j.actamat.2022.118514
  24. Gadelmeier, C., Agudo Jacome, L., Suarez Ocano, P., and Glatzel, U. Effect of stacking fault energy (SFE) of single crystal, equiatomic CrCoNi and Cantor alloy on creep resistance. Effect of stacking fault energy (SFE) of single crystal, equiatomic CrCoNi and Cantor alloy on creep resistance. Materials Science & Engineering, A 908, 146779, 2024. https://doi.org/10.1016/j.msea.2024.146779