TRANSMISSION ELECTRON MICROSCOPY ANALYSIS OF COPPER ZINC SULPHIDE THIN FILMS
European Journal of Materials Science and Engineering, Volume 10, Issue 3, 2025
PDF Full Article, DOI: 10.36868/ejmse.2025.10.03.173, pp. 173-180
Published: September 20, 2025
Joseph Onyeka EMEGHA1,*
1 Faculty of Science and Computing, Hensard University, P.O.Box 1036, Yenagoa, Bayelsa State, Nigeria.
* Corresponding author: jjjemegha@yahoo.com
Abstract
In this study, ternary copper zinc sulphide (CZS) thin films were produced using the chemical bath deposition (CBD) technique at 30 0° C. The aim was to investigate the influence of deposition concentrations( x=0.2,0.4,0.6,and 0.8), and durations (10, 12, 14, and 16 hours) on the transmission electron microscopy (TEM) characteristics of the prepared CZS thin films. The process involved using an ammonia solution to adjust the pH and triethanolamine (TEA) as a complexing agent. The CBD technique is recognized as a cost-effective and straightforward method, as reported by numerous researchers. The deposited films exhibited crystalline grains that were ellipsoidal in nature and randomly distributed across the substrate, with sizes varying (from 0.2 to 0.6 ) according to the deposition parameters. The influence of deposition time on the morphological characteristics has also been explored. These findings confirm that the CBD-deposited films can be modified from amorphous to polycrystalline for various device applications.
Keywords: concentrations, CZS, thin film, morphology, chemical bath deposition.
References:
[1] A. Shabbir, Z. Hussain, Z. S. Khan, and W. Qasim, Morphology matters: Investigating the influence of granules and nanofibers on the physicochemical properties of TiO2 for optoelectronic applications, Optical Materials, 146, 2023, p. 114525, https://doi.org/10.1016/j.optmat.2023.114525.
[2] F.O. Efe, B. Olofinjana, O. Fasakin, M.A. Eleruja, and E.O.B. Ajayi, Compositional, structural, morphological, optical and electrical property evolutions in MOCVD Cu-Zn-S thin films prepared at different temperatures using a single solid source precursor, Journal of Electronic Materials 48(12), 2019, pp. 8000-8013.
[3] J. O. Emegha, K. E. Ukhurebor, U. O. Aigbe, J. Damisa, A. V. Babalola, Synthesis and characterization of copper zinc iron sulphide (CZFS) thin films, Heliyon, 8(8), 2022, p. e10331. https://doi.org/10.1016/j.heliyon.2022.e10331
[4] J.O. Emegha, K. Onyenike, R. O. Jolayemi, C. A. Ejelonu, F. Efe, and O. T. Ojo, Synthesis and characterization of zinc cobalt sulphide nanofilms for optoelectronic applications, Chemistry of Inorganic Materials, 4, 2024, p. 100068, https://doi.org/10.1016/j.cinorg.2024.100068.
[5] M. Innocenti, L. Becucci, I. Bencista, E. Carretti, S. Cinotti, L. Dei, F. Di Benedetto, A. Lavachi, F. Marinelli., E. Salvietti, F. Vizza, and M.L. Foresti, Electrochemical growth of Cu-Zn sulfides, Journal of Electroanalyitcal chemistry. 710, 2013, pp. 17 – 21.
[6] J. Santos-Cruz, J. Coronel-Hernandez, S.A. Mayen-Harnandez, et al., Optical, electrical and photocatalytic properties of the ternary semiconductors ZnxCd1-xS, CuxCd1-xS and CuxZn1-xS. Hindawi, Publishing Corporation International Journal of Photoenergy. 2014, p. 158782, Doi: 10.1155/2014/158782
[7] J.O. Emegha, K.E. Ukhurebor, U. Aigbe, B. Olofinjana, S.O. Azi, and M.A. Eleruja, Effect of deposition temperature on the properties of copper-zinc sulphide thin films using mixed copper and zinc dithiocarbamate precursors, Gazi University Journal of Science, 35(4), 2022, pp. 1556–1570. doi: 10.35378/gujs.887025.
[8] J.O. Emegha, B. Olofinjana, K.E. Ukhurebor, J.T. Adegbite, and M.A. Eleruja, Electrical properties of semiconducting copper zinc sulphide thin films, Current Applied Science and Technology. 22 (1), 2022, pp. 1–9. doi.org/10.55003/cast.2022.01.22.003
[9] J. O. Emegha, M. C. Okafor, and K. E. Ukhurebor, Optical properties of copper-zinc sulphide network from mixed single solid source precursors of copper and zinc dithiocarbamates, Walailak Journal of Science and Technology (WJST), 18(9), 2021, pp. 1-11. doi:10.48048/WJST.2021.9535
[10] C.C. Uhuegbu, E.B. Babatunde, and C.O. Oluwafemi, The study of copper zinc sulphide (CuZnS2) thin films, Turkish Journal of Physics. 32, 2008, pp. 39-47.
[11] J.W. Coburn, Sputtering in the surface analysis of solids: A discussion of some problems, Journal of Vacuum Science & Technology A., 13(5), 1976, pp. 1037–1044. https://doi.org/10.1116/1.569056
[12] R. S, Mane, and C.D. Lokhande, Chemical deposition method for metal chalcogenide thin films. Materials Chemistry and Physics, 65, 2000, pp. 1-31.
[13] J. O. Emegha, and E. D. Nwanze, Synthesis and Characterization of Semiconducting Iron Copper Sulphide Thin Films: A Review, PHYSICS Access. 2(2), 2022, pp. 18 – 24. DOI:10.47514/phyaccess.2022.2.2.003
[14] B.A. Ezekoye, P.O. Offor, V.A. Ezekoye, F.I. and Ezema, Chemical bath deposition technique of thin films: a review. International Journal of Scientific Research, 2(8), 2023, pp. 452-456.
[15] D.E. Elete, J.O. Emegha, N.O. Nenuwe, O.W. Omagbemi, Synthesis and characterization of chemical bath deposited copper doped lead sulfide thin films, Bulletin of the Chemical Society of Ethiopia, 37(5), 2023, pp. 1237-1251. DOI: https://dx.doi.org/10.4314/bcse.v37i5.15
[16] D. Mugle, and G. Jadhav, Short review on chemical bath deposition of thin film and characterization, AIP Conference Proceedings, 1728(1), 2016, pp. 23 – 39
[17] J.O. Emegha, J. Damisa, F.O. Efe, B. Olofinjana, M.A. Eleruja, and S.O. Azi, Preparation and characterization of metal organic chemical vapour deposited copper zinc sulphide thin films using single solid source precursors. European Journal of Materials Science and Engineering, 4(1), 2019, pp.11-22. DOI:10.36868/ejmse.2019.04.01.011
[18] B. Olofinjana, A. C. Adebisi, F. O. Efe, O. Fasakin, K. O. Oyedotun, M. A. Eleruja, E. O. B. Ajayi and N. Manyala, Single solid source precursor route to the synthesis of MOCVD Cu-Cd-S thin films, Materials Research Express, 6, 2019, 106442, DOI 10.1088/2053-1591/ab413a
[19] S.M. Ho, Atomic Force Microscopy Investigation of the Surface Morphology of Ni3Pb2s2 Thin Films, European Journal of Scientific Research, 125, 2014, pp. 475-480.
[20] J. Damisa, and J.O.Emegha, Growth and optical analysis of cobalt tin sulphide thin films using SILAR technique. Nigerian Research Journal of Engineering and Environmental Sciences (RJEES). 6(2), 2021, pp. 642-648. http://doi.org/10.5281/zenodo.5805219
[21] A.V. Stanchik, M.S. Tivanov, I.I. Tyukhov, R. Juskenas, O.V. Korolik, V.F. Gremenok, A.M. Saad, and A. Naujokaitis, Temperature dependence of Raman scattering in the Cu2ZnSnSe4 thin films on a Ta foil substrate, Solar Energy, 201, 2020, pp. 480-488, https://doi.org/10.1016/j.solener.2020.03.043.
[22] J. Jubimol, M. S. Sreejith, C. Sudha Kartha, K. P. Vijayakumar, and Godfrey Louis; Photoluminescence studies on copper zinc sulfide thin films synthesized through chemical bath deposition. AIP Conf. Proc. 22 March 2019; 2082 (1): 050005. https://doi.org/10.1063/1.5093865
[23] F. O. Efe, B. Olofinjana, O. Fasakin, C. A. Adebisi, M. A. Eleruja, and T. G. Fabunmi, Opto-electronic properties of copper-zinc-sulfide thin films grown via metalorganic-chemical vapor deposition technique at different flow rates, Physica Scripta. 98(8), 2023, 085914. doi: 10.1088/1402-4896/ace2f8.
[24] J. Damisa, J.O.Emegha, and I. L. Ikhioya, Deposition Time induced Structural and Optical Properties of Lead Tin Sulphide Thin Films, Journal of the Nigerian Society of Physical Sciences, 3( 4), 2021, pp. 455–458, doi: 10.46481/jnsps.2021.157.
[25] A.V. Babalola, V. Oluwasusi, V.A. Owoeye, J.O. Emegha, D.A. Pelemo, A.Y. Fasasi, U.M. Gurku, S.O. Alayande, S. Yusuf and B. Saje, Effect of tin concentrations on the elemental and optical properties of zinc oxide thin films, Heliyon, 10, 2024, p. e23190. https://doi.org/10.1016/j.heliyon.2023.e23190
[26] C. Priyanka and O.P. Choudhary, Uses of Transmission Electron Microscope in Microscopy and its Advantages and Disadvantages, International Journal of Current Microbiology and Applied Sciences, 7(05), 2018, 743 – 747. doi: https://doi.org/10.20546/ijcmas.2018.705.090
[27] S.M. Ho, SEM Analysis of Ni3Pb2S2 thin films produced by chemical bath deposition technique in the presence of the Na2EDTA, EPRA International Journal of Multidisciplinary Research. 6, 2020, pp. 29-34.
[28] D.E. Ortiz-Ramos, L.A. Gonzalez, and R. Ramirez –Bon, P-type transparent Cu doped ZnS thin films by the chemical bath deposition method, Material letters, 12, 2014, pp 267-270
[29] M. A. Asadabad and M. J. Eskandari, ‘Electron Diffraction’, Modern Electron Microscopy in Physical and Life Science, InTech, 18, 2016. doi: 10.5772/61781.
[30] K. Noriyuki, I. Seigo, N. Duy- Cuong and N. Hitoshi, Copper zinc sulphur compound solar cells fabricated by spray pyrolysis deposition for solar cells. Natural resources, 4, 2013, pp. 142 – 145.
[31] L. Boufendi, M. Mikikian, S. Huet, and G. Viera, Electron diffraction and high-resolution transmission microscopy studies of nanostructured Si thin films deposited by radio frequency dusty plasmas, Thin Solid Films, 403, 2019, pp. 467-471.
