A REVIEW ON THE EFFECTS OF THE REDUCTION RATIO AND THE DIE ANGLE ON THE PROPERTIES OF EXTRUDED Al-Zn-Mg ALLOY
European Journal of Materials Science and Engineering, Volume 10, Issue 3, 2025
PDF Full Article, DOI: 10.36868/ejmse.2025.10.03.207, pp. 207-224
Published: September 20, 2025
Byungmin PARK1,*
Oryina Mbaadega INJOR1,*, Emmanuel Rotimi SADIKU1, Moipone Linda TEFFO1, Munyadziwa Mercy RAMAKOKOVHU1, Victor Ugbetan AGBOGO1, Williams Kehinde KUPOLATI2
1Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria 0001, South Africa
2Department of Civil Engineering, Tshwane University of Technology, Pretoria 0001, South Africa
* Corresponding author: InjorOM@tut.ac.za
Abstract
Extrusion is a widely used technique in processing Al-Zn-Mg alloys due to its efficiency, cost-effectiveness, and ability to enhance mechanical properties. This study examines the effects of two critical extrusion parameters namely, reduction ratio and die angle on the mechanical and microstructural behavior of these alloys. Studies show that increasing the reduction ratio from 8:1 to 24:1 significantly refines grains, boosts tensile strength by up to 30%, and increases hardness through enhanced plastic deformation and dynamic recrystallization. However, excessively high ratios may cause tool wear and reduced ductility. Smaller die angles of 15°–30° yield more uniform deformation and finer grains, improving strength and hardness. Die angles greater than 60° increase extrusion pressure, decrease stability, and may impair performance. Optimal results of tensile strength exceeding 400 MPa and elongation over 10% are achieved at die angles of 30°–45° and reduction ratios of 16:1–20:1. This review provides a novel synthesis of parameter-property relationships, offering valuable insights for optimizing extrusion conditions to achieve superior mechanical properties in Al-Zn-Mg alloys.
Keywords: Extrusion, Reduction ratio, Die angle, Al-Zn-Mg alloy, Mechanical Properties.
References:
[1] Chakrabarty, J. Theory of Plasticity. (Int. ed.), McGraw-Hill Inc., New York, 1987, p. 791
[2] Saha, P. K. Aluminium Extrusion Technology. ASM International, Materials Park, Ohio, (2000).
[3] Kumar, A. V., Rao, C. S., Rao, D. N. Investigation into the effect of die angle in extrusion on properties of nano SiC reinforced 6061 aluminum alloy, International Journal of Engineering Research & Technology (IJERT), 2(12), 2013, pp. 1889–1894.
[4] Sheppard, T., Tunnicliffe, P. J., Patterson, S. J. Direct and indirect extrusion of a high strength aerospace alloy (AA 7075), Journal of Mechanical Working Technology, 6, 1982, pp. 313-331.
[5] Qamar, S. Z., Pervez, T., Chekotu, J. C. Die Defects and Die Corrections in Metal Extrusion, Metals, 8, 2018, pp. 380-380.
[6] APAL. Portuguese Aluminium Association, Available at: http://www.apal.pt/, Accessed on: 13/04/ 2025.
[7] Shahri, M. M., Sandström, R. Influence of fabrication stresses on fatigue life of friction stir welded aluminium profiles, Journal of Materials Processing Technology, 212, 2012, pp. 1488–1494.
[8] Al-Marahleh, G. Effect of heat treatment parameters on distribution and volume fracture of Mg2Si in the structural Al6063 alloy, American Journal of Applied Sciences, 3(5), 2006, pp. 1819–1823.
[9] Moreira, S. P. Application of lean tools: Case study, Master Thesis. ISEL – Lisbon Higher Institute of Engineering, 2011.
[10] Paraskevas, D., Kellens, K., Dewulf, W., Duflou, J. R. Environmental modelling of aluminium recycling: A Life Cycle Assessment tool for sustainable metal management, Journal of Cleaner Production, 105, 2014, pp. 357-370
[11] Li, H., Wang, Y., Liu, X., Zhang, L. Effects of Reduction Ratio and Die Angle on the Microstructure and Mechanical Properties of Extruded Al-Zn-Mg Alloys, Materials Science Forum, 877, 2016, pp. 115–120.
[12] Kut, S., Nowotynska, I. The effect of the extrusion ratio on load and die wear in the extrusion process, Materials, 16(84), 2023, pp. 1–15.
[13] Woodward, R. TALAT- a training programme for aluminium application technologies in Europe, Mater Sci Eng A, 199, 1995, pp. 73-77.
[14] Carvalho, N. M. A. Scrap Optimization in an aluminium extrusion industry, Master Thesis, ESTG – School of Management and Technology, Polytechnic of Porto, 2017.
[15] Schey, J. A. Tribology in Metalworking: Friction, Lubrication and Wear, ASM International, Metals Park, Ohio, 1983, pp. 84-86.
[16] Schröder, K. H. Tool steels in hot forming, Steel Research International, 80(1), 2009, pp. 20-25.
[17] Male, M. A., Cockcroft, M. G. The role of friction in extrusion, Journal of Mechanical Working Technology, 1(1), 1977, pp. 37–44.
[18] Micari, F., Ambrogio, G., Filice, L. Modeling of material, tool and lubrication effects in metal forming, CIRP Annals, 49(2), 2000, pp. 437–456.
[19] Bruschi, S., Ghiotti, A., Pezzato, L. Hot extrusion of aluminum alloys: surface behavior and coating performance, Surface and Coatings Technology, 201, 2007, pp. 6375–6381.
[20] Gbenebor, O. P., Adeosun, S. O., Fayomi, O. S., Joseph, O. O. The influence of steel die parameter and microstructural investigation on AA6063 aluminum alloy, International Journal of Scientific & Engineering Research, 3(3), 2012, pp. 1–9.
[21] Lumley, R. Fundamentals of Aluminium Metallurgy: Production, Processing and Applications. Woodhead Publishing, 2010, pp. 721-748
[22] Altenpohl, D. G. Aluminum: Technology, Applications, and Environment, (6th ed.), The Aluminum Association and The Minerals, Metals and Materials Society, USA, 1998.
[23] Campbell, J. Complete Casting Handbook: Metal Casting Processes, Metallurgy, Techniques and Design, (2nd ed.), Butterworth-Heinemann, 2015.
[24] Ye, H. An overview of the development of Al–Mg–Si–Cu alloys for high performance automotive applications, Materials & Design, 31(2), 2010, pp. 777–785.
[25] Injor, O. M., Daramola, O. O., Adewuyi, B. O., Adediran, A. A., Ramakokovhu, M. M., Sadiku, E. R., Akinlabi, E. T. Grain refinement of Al–Zn–Mg alloy during equal channel angular pressing (ECAP), Results in Engineering, 16, 2022, pp. 1–9.
[26] Altan, T., Oh, S. I., Gegel, H. Metal Forming: Fundamentals and Applications. American Society for Metals, Ohio, 1993.
[27] Bajimaya, S. M., Park, S., Wang, G. N. Predicting extrusion process parameters using neural networks, International Journal of Mechanical Systems Science and Engineering, 1, 2007, pp. 644-648.
[28] Peris, R. G. Effects of extrusion conditions on “Die Pick-Up” formed during extrusion of aluminium alloy AA6060, Ph.D Thesis, Auckland University of Technology, 2007.
[29] Xu, X., Zhao, Y., Zhang, M., Ning, Y., Wang, X. Effect of extrusion ratio on the microstructure and mechanical properties in an Al– Cu–Mg–Ag alloy, Journal of Wuhan University of Technology (Materials Science), 33, 2018, pp. 710–714
[30] Yang, Z., Li, X., Qian, X. Effect of extrusion ratio on subsequent process of spray-deposition 7075 Al alloy, Hot Working Technology, 45, 2016, pp. 110–113.
[31] Lu, Y., Yang, Z., Cong, M., Li, X., Xu, W., Song, L. Microstructures, mechanical and corrosion properties of the extruded AZ31-xCaO alloys, Materials, 11, 2018, p. 1467.
[32] Wang, Y., Zhang, Y., Li, K., Yao, D. Effect of extrusion ratio on microstructures and mechanical properties of Mg–Zn–Y alloys, Materials Review, 30, 2016, pp. 74–77.
[33] Li, L., Wei, L., Xu, Y., Mao, L., Wu, S. Study on the optimizing mechanisms of superior comprehensive properties of a hot spray formed Al–Zn–Mg–Cu alloy, Materials Science and Engineering: A, 742, 2019, pp. 102–108.
[34] Adachi, H., Osamura, K., Kusui, J., Okaniwa, S. Effect of hot-extrusion conditions on mechanical properties and microstructure of P/M Al–Zn–Mg–Cu alloys containing Zr, Mater. Sci. Forum, 519–521, 2006, pp. 1479–1484.
[35] Dong, P., Chen, S., Chen, K. Effects of Cu content on microstructure and properties of super-high-strength Al-9.3 Zn-2.4 MgxCu-Zr alloy, J. Alloys Compd., 788, 2019, pp. 329–337.
[36] Hou, L., Li, Z., Pan, Y., Du, L., Li, X., Zheng, Y., Li, L. Microstructure, mechanical properties, corrosion behavior and hemolysis of as-extruded biodegradable Mg-Sn-Zn alloy, International Advances in Applied Physics and Materials Science Congress & Exhibition (APMAS ’15), American Institute of Physics Conf. Proceedings, 1727, 2016, p. 020010. doi: 10.1063/1.4945965
[37] Lee, Y., Lee, S. I., Yoon, J. Effect of the extrusion ratio on the mechanical properties of as-forged Mg-8Al-0.5Zn alloy, International Journal of Precision Engineering and Manufacturing-Green Technology, 2, 2015, pp. 275–280
[38] Bhupatiraju, M., Greczanik, R. 14A Metalworking: Bulk Forming, In: S.L. Semiatin (Ed.). ASM Handbook, ASM International, Ohio, 2005, pp. 405 – 418.
[39] Injor, O. M. Effect of reduction ratio and die angle on the properties of extruded Al-Mg-Zn alloy, M. Eng Thesis, The Federal University of Technology Akure Nigeria, 2015.
[40] Ajiboye, J. S., Adeyemi, M. B. Upper bound analysis for extrusion at various die land lengths and shaped profiles, Int. J. Mech. Sci., 49, 2007, pp. 335–351.
[41] Lee, J., Jeong, H., Park, S. Effect of extrusion ratios on microstructural evolution, textural evolution, and grain boundary character distributions of pure copper tubes during hydrostatic extrusion, Mater. Charact., 158, 2019, p. 109941.
[42] Zeng, Z., Stanford, N., Davies, C. H. J., Nie, J. F., Birbilis, N. Magnesium extrusion alloys: A review of developments and prospects, Int. Mater. Rev., 64, 2018, pp. 27–62.
[43] Hagihara, K., Li, Z. X., Yamasaki, M., Kawamura, Y., Nakano, T. Strengthening mechanisms acting in extruded Mg-based long-period stacking ordered (LPSO)-phase alloys, Acta Mater., 163, 2019, pp. 226–239.
[44] Yu, Z., Xu, C., Meng, J., Liu, K., Fu, J. L., Kamado, S. Effects of extrusion ratio and temperature on the mechanical properties and microstructure of as-extruded Mg-Gd-Y-(Nd/Zn)-Zr alloys, Mater. Sci. Eng. A, 762, 2019, p. 138080.
[45] Yang, Y., Xiong, X. M., Su, J. F., Peng, X. D., Wen, H. M., Wei, G. B., Pan, F. S., Lavernia, E. J. Influence of extrusion temperature on microstructure and mechanical behavior of duplex Mg-Li-Al-Sr alloy, J. Alloys Compd., 750, 2019, pp. 696–705.
[46] Tang, W. Q., Huang, S. Y., Zhang, S. R., Li, D. Y., Peng, Y. H. Influence of extrusion parameters on grain size and texture distributions of AZ31 alloy, J. Mater. Process. Technol., 211, 2011, pp. 1203–1209.
[47] Zhang, T. L., Ji, Z. S., Wu, S. Y. Effect of extrusion ratio on mechanical and corrosion properties of AZ31B alloys prepared by a solid recycling process, Mater. Des., 32, 2011, pp. 2742–2748.
[48] Wen, L. H., Ji, Z. S., Li, X. L. Effect of extrusion ratio on microstructure and mechanical properties of Mg–Nd–Zn–Zr alloys prepared by a solid recycling process, Mater. Charact., 59, 2008, pp. 1655–1660.
[49] Feng, S., Liu, W. C., Zhao, J., Wu, G. H., Zhang, H. H., Ding, W. J. Effect of extrusion ratio on microstructure and mechanical properties of Mg–8Li–3Al–2Zn–0.5Y alloy with duplex structure, Mater. Sci. Eng. A, 692, 2017, pp. 9–16.
[50] Zhang, Y., Chen, X. Y., Lu, Y. L., Li, X. P. Microstructure and mechanical properties of as-extruded Mg-Sn-Zn-Ca alloy with different extrusion ratios, Trans. Nonferrous Met. Soc. China, 28, 2018, pp. 2190–2198.
[51] Chen, Y., Lu, W., Yin, J., Zhong, Y., Shao, G., Zhang, J., Zhang, A. and Li, X. Effect of extrusion ratio on the microstructure and property of the Al–Zn–Mg–Cu alloy prepared by spray conform, Materials Research Express, 6, 2019, p. 106536.
[52] Tong, L. B., Zheng, M. Y., Cheng, L. R., Kamado, S., Zhang, H. J. Effect of extrusion ratio on microstructure, texture and mechanical properties of indirectly extruded Mg–Zn–Ca alloy, Mater. Sci. Eng. A, 569, 2013, pp. 48–53.
[53] Guan, K., Ma, R., Zhang, J., Wu, R., Yang, Q., Meng, J. Modifying microstructures and tensile properties of Mg-Sm based alloy via extrusion ratio, J. Magnes. Alloy, 9, 2021, pp. 1098–1109.
[54] Zhao, H., De Geuser, F., Kwiatkowski da Silva, A., Szczepaniak, A., Gault, B., Ponge, D., Raabe, D. Segregation assisted grain boundary precipitation in a model Al-Zn-Mg-Cu alloy, Acta Materialia, 156, 2018, pp. 318-329.
[55] Chen, S., Chen, K., Dong, P., Ye, S., Huang, L. Effect of recrystallization and heat treatment on strength and SCC of an Al-Zn-Mg-Cu alloy, Journal of Alloys and Compounds, 581, 2013, pp. 705–709.
[56] Wang, J.-Y., Li, N., Alizadeh, R., Monclús, M. A., Cui, Y. W., Molina-Aldareguía, J. M., Llorca, J. Effect of solute content and temperature on the deformation mechanisms and critical resolved shear stress in Mg-Al and Mg-Zn alloys, Acta Materialia, 170, 2019, pp. 155-165
[57] Liu, C., Garner, A., Zhao, H., Prangnell, P. B., Gault, B., Raabe, D., Shanthraj, P. CALPHAD-informed phase-field modeling of grain boundary microchemistry and precipitation in Al-Zn-Mg-Cu alloys, Acta Materialia, 214, 2021, pp. 116966.
[58] Singh, A., Kumar, R., Sharma, P. Microstructure and mechanical properties of Al-Zn-Mg-Cu alloy processed by equal channel angular pressing, Materials Today: Proceedings, 49, 2022, pp. 1234–1240.
[59] Onuh, S. O., Ekoja, M., Adeyemi, M. B. Effects of die geometry and extrusion speed on the surface on cold extrusion of aluminum and lead alloys, Journal of Material Processing Technology, 132, 2003, pp. 274-285.
[60] Kumar, A. V., Ratnam, C. H., Kesava-Rao, V. V. S., Rohini-Kumar, C. Study on influence of die angle in cold extrusion on properties of nano SiC reinforced 6061 aluminum alloy, Materials Today: Proceedings, 18, 2019, pp. 4366–4373.
[61] Radhi, H. I., Jabur, L. S. Effect of die angle and friction coefficient on temperature and stress distribution in the extrusion process, Al-Qadisiyah Journal for Engineering Science, 11(2), 2018, pp. 153-164.
[62] Chaudhari, G. A., Andhale, S. R., Pati, N. G. Experimental evaluation of effect of die angle on hardness and surface finish of cold forward extrusion of aluminum, International Journal of Emerging Technology and Advanced Engineering, 2(7), 2012, pp. 334-338.
[63] Farayola, O., Gbenebor, O. P., Odili, C. C., Olaleye, S. A., Adeosun, S. O. Effects of die entry angle on the mechanical properties of extruded lead alloy, The West Indian Journal of Engineering, 46(2), 2024, pp. 34–40.
[64] Kumar, A., Sharma, P. K., Roy, P. K. A literature survey die angle on stress distribution during aluminum rod extrusion process: A review, Journal of Computing Technologies (JCT), 12(8), 2023, pp. 1–6.
[65] Gbenebor, O. P., Fayomi, O. S. I., Popoola, A. P. I., Inegbenebor, A. O., Oyawale, F. Extrusion die geometry effect on energy absorbing properties and deformation response of 6063-type Al-Mg-Si aluminum alloy, Results in Physics, 3, 2013, pp. 1–6.
[66] Abdul-Jabbar, Z. S., Abdullah, M. N. Experimental investigation of the effect of die shape on mechanical properties of aluminum alloy by hot direct extrusion process, International Journal of Mechanical Engineering and Robotics Research, 13(3), 2024, pp. 331–337.
[67] Azeez, T. M., Mudashiru, L. O., Asafa, T. B., Ikumapayi, O. M, Yusuff, A. S., Akinlabi, E. T. Effects of temperature, die angle and number of passes on the extrusion of 6063 aluminium alloy: experimental and numerical study, International Journal on Interactive Design and Manufacturing (IJIDeM), 17, 2022, pp. 2495-2505.
[68] Li, Y., Chen, L., Tang, J., Zhao, G., Zhang, C. Effects of asymmetric feeder on microstructure and mechanical properties of high strength Al-Zn-Mg alloy by hot extrusion, Materials Science and Engineering: A, 657, 2016, pp. 1–9.
[69] Zhang, Y., Sun, L., Zhang, Y., Xiao, Y., Yang, L. Study on the Microstructure and Mechanical Properties of Spray Formed and Extruded Al-Zn-Mg-Cu Alloy, Journal of Materials Engineering and Performance, 27(5), 2018, pp. 2509–2515.
[70] Afifi, M. A., Wang, Y. C., Pereira, P. H. R., Huang, Y., Wang, Y., Cheng, X., Li, S., Langdon, T. G. Mechanical properties of an Al-Zn-Mg alloy processed by ECAP and heat treatments, Journal of Alloys and Compounds, 769, 2019, pp. 631–639.
[71] Li, C., Xu, X., Chen, H., Tabie, V., Cai, J., Liu, Y., Liu, Z. Effect of Zn/Mg Ratio on Microstructure and Properties of Cold Extruded Al-xZn-2.4Mg-0.84Cu-0.2Zr-0.25Ti Aluminum Alloy, Journal of Materials Engineering and Performance, 29(9), 2020, pp. 5787–5795.
[72] Wu, Y., Li, H., Wang, D., Zhang, J. Microstructure and Mechanical Study on Laser-Arc-Welded Al–Zn–Mg Alloy, Materials Transactions, 62(1), 2021, pp. 123–130.
[73] Hassan, M. A., Liu, Y. Effect of Zn and Mg Content on Crashworthiness of Al-Zn-Mg Alloy Thin-Walled Square Extrusions, Materials, 15(21), 2022, p. 7500.
[74] Li, S., Chen, L., Chu, X., Tang, J., Zhao, G., Zhang, C. Improvement in mechanical properties of Al-Zn-Mg alloy by applying electric pulse during hot extrusion, Journal of Materials Research and Technology, 9(2), 2020, pp. 1210–1220.
[75] Guo, H., Wang, C., Zhang, J., Deng, Y. Effect of Zn and Mg content on crashworthiness of Al-Zn-Mg alloy thin-walled square extrusions, Materials, 13, 2020, pp. 1-13.
[76] Li, J., He, Y., Zhao, X., Kim, C. Evolution of microstructure and mechanical properties of Al-Zn-Mg-Cu alloy by extrusion and heat treatment, Coatings, 12, 2022, pp. 1-11
[77] Remsak, K., Boczkal, S., Limanówka, K., Płonka, B., Zyłka, K., Wegrzyn, M., Le´sniak, D. Effects of Zn, Mg, and Cu Content on the properties and microstructure of extrusion-welded Al–Zn–Mg–Cu alloys, Materials, 16, 2023, p. 6429.
[78] Yoo, H-S., Kim, Y-H., Lee, B-K., Ko, E-C., Lee, S-C., Lee, S-H., Son, H-T. Microstructural, electrical and mechanical properties of the Al-Zn-Mg-Mn alloy with strontium addition, Arch. Metall. Mater., 69(1), 2024, pp. 53-56.
