ELECTROCHEMICAL BEHAVIOR OF NEW BIOCOMPATIBLE TITANIUM ALLOYS CONTAINING Mo, Zr, Ta, AND Nb
European Journal of Materials Science and Engineering, Volume 10, Issue 3, 2025
PDF Full Article, DOI: 10.36868/ejmse.2025.10.03.225, pp. 225-234
Published: September 20, 2025
Byungmin PARK1,*
Oryina Mbaadega INJOR1,*,
Madalina Simona BALTATU1, Andrei Victor SANDU1,2,3, Andrei PRUTEANU1, Dragos Cristian ACHITEI1, Manuela Cristina PERJU1, Dumitru Doru BURDUHOS-NERGIS1, Mirabela Georgiana MINCIUNA1, Petrica VIZUREANU1,2,*
1 “Gheorghe Asachi” Technical University of Iaşi, Faculty of Materials Science and Engineering, Iași, Romania
2 Academy of Romanian Scientists, 54 Splaiul Independentei St., Sect. 5, 050094, Bucharest, Romania
3 Romanian Inventors Forum, Str. Sf. P. Movila 3, Iasi, Romania
* Corresponding author: peviz2002@yahoo.com
Abstract
Metallic implants operate in a complex physiological environment where electrochemical processes govern corrosion and long-term performance. This work investigates the electrochemical behavior of pure titanium, molybdenum, zirconium, tantalum, and niobium in Ringer’s solution at pH 5.5, using linear polarization, cyclic polarization, and electrochemical impedance spectroscopy (EIS). The results show that titanium and tantalum rapidly form compact and adherent oxide films (TiO₂, Ta₂O₅), which ensure passivation and low corrosion rates. Zirconium exhibits limited passivation with porous oxide layers and mainly generalized corrosion, while molybdenum does not form a stable passive film and corrodes actively, producing weakly adherent porous oxides. Niobium displays intermediate behavior, with partial passivation but reduced stability compared to Ti and Ta. The EIS spectra were adequately fitted using equivalent circuit models with two time constants and constant phase elements. These findings provide a reference framework for understanding the individual role of each element in designing and optimizing future Ti–Mo–Zr–Ta–Nb biomedical alloys.
Keywords: titanium, niobium, tantalum, Ringer’s solution, polarization, EIS, CPE, obtaining.
References:
[1] M. Sarraf, E.R. Ghomi, S. Alipour, S. Ramakrishna, N.L. Suikman, A state-of-the-art review of the fabrication and characteristics of titanium and its alloys for biomedical applications, Bio-Design and Manufacturing, 5, 2021, pp. 371–395. https://doi.org/10.1007/s42242-021-00170-3
[2] C. Veiga, J.P. Davim, A. Loureiro, Properties and applications of titanium alloys: A brief review, Reviews on Advanced Materials Science, 32, 2012, pp. 133–148.
[3] P. Pushp, D. Mabrukar, C. Arati, Classification and applications of titanium and its alloys, Materials Today: Proceedings, 54, 2022. https://doi.org/10.1016/j.matpr.2022.01.008
[4] J. Willis, S. Li, S.J. Crean, F.N. Barrak, Is titanium alloy Ti‐6Al‐4V cytotoxic to gingival fibroblasts—A systematic review, Clinical and Experimental Dental Research, 7(6), 2021, pp. 1037–1044. https://doi.org/10.1002/cre2.444
[5] E. Marin, A. Lanzutti, Biomedical applications of titanium alloys: A comprehensive review, Materials, 17, 2024, 114.
[6] M. S.Baltatu, P. Vizureanu, A.V. Sandu, I. Baltatu, D.D. Burduhos-Nergis, M. Benchea. Prospects on titanium biomaterials. European Journal of Materials Science and Engineering, 8(4), 2023, 191–200. Retrieved from https://ejmse.ro/articles/08_04_01_EJMSE-23-191.pdf
[7] A. Savin, P. Vizureanu, Z. Prevorovsky, M. Chlada, J. Krofta, M.S. Baltatu, B. Istrate, R. Steigmann, Noninvasive evaluation of special alloys for prostheses using complementary methods, IOP Conference Series: Materials Science and Engineering, 374, 2018, 012030.
[8] I. Baltatu, L. Benea, P. Vizureanu, M.S. Baltatu, M. Nabialek. Biofunctionalization of titanium alloys: Methods and applications. European Journal of Materials Science and Engineering, 8(4), 2023, 218–229. Retrieved from https://ejmse.ro/articles/08_04_05_EJMSE-23-218.pdf
[9] R.R. Boyer, R.D. Briggs, The Use of β Titanium Alloys in the Aerospace Industry, Journal of Materials Engineering and Performance, 14, 2005, pp. 681–685.
[10] I. Baltatu, P. Vizureanu, M.S. Baltatu, D. Achitei, M. Nabialek. Structural analysis of Ti–Mo alloys. European Journal of Materials Science and Engineering, 4(1), 2019, 63–70. Retrieved from https://ejmse.ro/articles/EJMSE_04_01_06_Baltatu.pdf
[11] M.S. Baltatu, P. Vizureanu, A.V. Sandu, C. Solcan, L.D. Hritcu, M.C. Spataru, Research Progress of Titanium-Based Alloys for Medical Devices, Biomedicines, 11, 2023, 2997.
[12] M. Najafizadeh, S. Yazdi, M. Bozorg, M. Ghasempour-Mouziraji, M. Hosseinzadeh, M. Zarrabian, P. Cavaliere, Classification and applications of titanium and its alloys: A review, Journal of Alloys and Compounds Communications, 3, 2024, 100019. https://doi.org/10.1016/j.jacomc.2024.100019
[13] M.S. Bălţatu, P. Vizureanu, V. Geantă, C. Nejneru, C.A. Țugui, S.C. Focşăneanu, Obtaining and Mechanical Properties of Ti-Mo-Zr-Ta Alloys, IOP Conference Series: Materials Science and Engineering, 209, 2017, 012019.
[14] A. Martinez, K. Osen, E. Skybakmoen, O. Kjos, G.M. Haarberg, K. Dring, New method for low-cost titanium production, Key Engineering Materials, 436, 2010, pp. 41–53.
[15] K.K. Wong, H.C. Hsu, S.C. Wu, W.F. Ho, A Review: Design from Beta Titanium Alloys to Medium-Entropy Alloys for Biomedical Applications, Materials, 16(21), 2023. https://doi.org/10.3390/ma16217046
[16] Y. Zhang, Y. Ma, Research Progress on Titanium–Niobium Micro-Alloyed High-Strength Steel, Materials, 18(2), 2025. https://doi.org/10.3390/ma18020325
[17] M. Zhong, Y. Lin, Area effect during the fracture process of high-Niobium-Titanium-Aluminum alloys under continuous tension loading-unloading, Frontiers in Materials, 2023. https://doi.org/10.3389/fmats.2023.1214872
[18] C. Jiménez-Marcos, J.C. Mirza-Rosca, M.S. Baltatu, P. Vizureanu, Preliminary studies of new heat-treated titanium alloys for use in medical equipment, Results in Engineering, 25, 2025, 104477. https://doi.org/10.1016/j.rineng.2025.104477
[19] C. Jiménez-Marcos, J.C. Mirza-Rosca, M.S. Baltatu, P. Vizureanu, Two novel Ti–Mo–Ta–Zr alloys for medical devices: Their microstructure, corrosion resistance and microhardness characteristics, Materials Chemistry and Physics, 334, 2025, 130511. https://doi.org/10.1016/j.matchemphys.2025.130511
[20] E.M. Safwat, S.A. Abdel-Gawad, M.A. Shoeib, Electrochemical anodization of cast titanium alloys in oxalic acid for biomedical applications, Frontiers of Chemical Science and Engineering, 18(2), 2024. https://doi.org/10.1007/s11705-023-2368-y
[21] V.O. Semin, A.P. Chernova, A.V. Erkovich, Electrochemical Properties and Structure of the TiNi Alloy Surface Layers Implanted with Titanium and Niobium Ions, Inorganic Materials: Applied Research, 15, 2024, pp. 638–648. https://doi.org/10.1134/S2075113324700060
[22] G. Senopati, R.A.R. Rashid, I. Kartika, S. Palanisamy, Recent Development of Low-Cost β-Ti Alloys for Biomedical Applications: A Review, Metals, 13(2), 2023. https://doi.org/10.3390/met13020194
[23] A. Li, Q. Wang, R. Chen, X. Din, Y. Su, H. Fu, Application of alloying for enhancing the corrosion resistance of titanium alloys: A review, Materials Today Communications, 42, 2025. https://doi.org/10.1016/j.mtcomm.2024.111111
[24] M.M. Iancu, C.I. Tatia, A. Robu, M.L. Vasilescu, I. Antoniac, A.M. Fratila. Current trends on materials and methods for teeth whitening, European Journal of Materials Science and Engineering, 9(4), 2024, pp. 323-336, DOI: 10.36868/ejmse.2024.09.04.323
[25] A.N. Omran, M.M. Ali, M.M. Kh, Biocompatibility, corrosion, and wear resistance of β titanium alloys for biomedical applications, Applied Physics A, 126(942), 2020. https://doi.org/10.1007/s00339-020-04118-9
[26] T.M. Sridhar, S. Vinodhini, U. Kamachi, B. Venkatachalapathy, R. Kulandaivelu, Load-bearing metallic implants: electrochemical characterisation of corrosion phenomena, Materials Technology, 31, 2016, pp. 1–14. https://doi.org/10.1080/10667857.2016.1220752
[27] H. Jaber, J. Kónya, P. Pinke, L. Toth, T. A. Kovács. Investigating the impact of annealing temperature on the microstructure and mechanical performance of selectively laser melted Ti6Al4V alloy. European Journal of Materials Science and Engineering, 8(4), 2023, 216–225. Retrieved from https://ejmse.ro/articles/08_04_06_EJMSE-23-216.pdf
[28] V. M. Tabie, J. K. Quaisie, J. Li, P. Yamba, X. Xu. The influence of ceramic particles on corrosion behavior of Ti750 alloy composites. European Journal of Materials Science and Engineering, 8(2), 2022, 187–195. Retrieved from https://ejmse.ro/articles/08_02_02_EJMSE-22-187.pdf
