INFLUENCE OF CELLULOSE ON THE PHYSICO-CHEMICAL CHARACTERIZATIONS OF ALKALI-ACTIVATED GEOPOLYMERS
European Journal of Materials Science and Engineering, Volume 10, Issue 4, 2025
PDF Full Article, DOI: 10.36868/ejmse.2025.10.04.237, pp. 237-244
Published: December 20, 2025
Mouna SELLAMI1,*, Hebat-Allah S. TOHAMY2, Dumitru-Doru BURDUHOS-NERGIȘ3, Petrică VIZUREANU3,4, Andrei Victor SANDU3,4,5, Mohamed TOUMI1
1 Laboratoire Physico-Chimie de L’Etat Solide, Faculté Des Sciences de Sfax, Université du Sfax, Route de Soukra Km3.5, BP 802, 3018 Sfax, Tunisia
2 Cellulose and Paper Department, National Research Centre, 33 El Bohouth Str., P.O. 12622, Dokki, Giza, Egypt
3 “Gheorghe Asachi” Technical University of Iasi, Faculty of Material Science and Engineering, Blvd. Dimitrie Mangeron, No. 41, 700050 Iasi, Romania
4 Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest, Romania
5 Romanian Inventors Forum, Str. Sf. P. Movila 3, 700089 Iasi, Romania
* Corresponding author: mouna.sellami@fss.u-sfax.tn
Abstract
Cellulose is widely recognized as a plentiful, renewable and optically active source of carbohydrate polymers. This research contributes to our understanding of the effect of incorporating cellulose into a metakaolin-based geopolymer matrix on its morphological and optical behaviour with the aim of expanding the range of applications for this eco-friendly material. The cellulose was incorporated as an additive into geopolymers with different weight percentages: 0.5%, 1%, 1.5%, and 2%. XRD diagrams of geopolymers display a broad amorphous hump, confirming the polymeric character of samples, with noticeable peaks correlated to illite, quartz, SiO2, and cellulose crystalline phases. The results obtained were confirmed by FTIR spectroscopy. The morphology of the samples was investigated by SEM, and the results indicate that the optimal concentrations of cellulose are 0.5 and 1 wt%. UV-VIS analysis revealed a significant increase in absorbance in the UV and visible regions of the G2 spectrum, corresponding to the highest amount of cellulose incorporated.
Keywords: alkali-activated geopolymers, cellulose, UV-VIS absorbance, SEM analysis .
References:
[1] J. Davidovits, Geopolymers, Journal of Thermal Analysis, 37(8), 1991, pp. 1633‑1656, doi: 10.1007/BF01912193.
[2] M. Sellami, M. Barre, M. Toumi, Synthesis, thermal properties and electrical conductivity of phosphoric acid-based geopolymer with metakaolin, Applied Clay Science, 180, 2019, p. 105192, doi: 10.1016/j.clay.2019.105192.
[3] M. Sellami, M. Barre, M. Toumi, The New Challenge of Acid-Based Geopolymers Synthesized with the Incorporation of Lithium Ions as Cathode Materials for Lithium-Ion Batteries, J Inorg Organomet Polym, 30(8), 2020, p. 3126‑3131, 2020, doi: 10.1007/s10904-020-01475-z.
[4] L. Angelova, D.D. Burduhos-Nergis, A. Surleva, A.V. Sandu, D. Ilieva, G.E. Chernev, P. Vizureanu, Study of Heavy Metal Encapsulation in Geopolymerized Industrial Waste by Sequential Extraction, JOM: the journal of the Minerals, Metals & Materials Society, 77(3), 2024, doi: 10.1007/s11837-024-07049-5.
[5] Y. Xie, C. Wang, Y. Guo, H. Cui, J. Xue, Improved mechanical and thermal properties of sustainable ultra-high performance geopolymer concrete with cellulose nanofibres, Journal of Building Engineering, 102, 2025, p. 112068, doi: 10.1016/j.jobe.2025.112068.
[6] C. Lv, J. Liu, G. Guo, Y. Zhang, The Mechanical Properties of Plant Fiber-Reinforced Geopolymers: A Review, Polymers, 14(19), 2022, p. 4134, doi: 10.3390/polym14194134.
[7] N. Ranjbar, M. Zhang, Fiber-reinforced geopolymer composites: A review, Cement and Concrete Composites, 107, 2020, p. 103498, doi: 10.1016/j.cemconcomp.2019.103498.
[8] Y. Habibi, L. A. Lucia, O. J. Rojas, Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications, Chem. Rev., 110(6), 2010, p. 3479‑3500, doi: 10.1021/cr900339w.
[9] S. Rocha Ferreira, N. Ukrainczyk, K. Defáveri Do Carmo E Silva, L. Eduardo Silva, E. Koenders, Effect of microcrystalline cellulose on geopolymer and Portland cement pastes mechanical performance, Construction and Building Materials, 288, 2021, p. 123053, doi: 10.1016/j.conbuildmat.2021.123053.
[10] Y. Xie, C. Wang, Y. Guo, H. Cui, J. Xue, Improved mechanical and thermal properties of sustainable ultra-high performance geopolymer concrete with cellulose nanofibres, Journal of Building Engineering, 102, 2025, p. 112068, doi: 10.1016/j.jobe.2025.112068.
[11] F. Wang al., Functionalized Cellulose Derivatives: Challenge or Opportunity in the Field of Chiral and Achiral Sensing, Critical Reviews in Analytical Chemistry, 1, p. 1‑18, doi: 10.1080/10408347.2025.2512176.
[12] N. H. M’sakni T. Alsufyani, Part B: Improvement of the Optical Properties of Cellulose Nanocrystals Reinforced Thermoplastic Starch Bio-Composite Films by Ex Situ Incorporation of Green Silver Nanoparticles from Chaetomorpha linum, Polymers (Basel), 15(9), 2023, p. 2148, doi: 10.3390/polym15092148.
[13] L. Bertolla, G. Taveri, P. Mácová, K. Sotiriadis, F. Šiška, Improving the cellulose/metakaolin geopolymer composite properties through a novel low-water approach, Materials letters, 383, 2025, p. 137967, doi: 10.1016/j.matlet.2024.137967.
[14] I. Kurek al., Foamed Eco-Geopolymer Modified by Perlite and Cellulose as a Construction Material for Energy-Efficient Buildings, Energies, 15(12), 2022, p. 4297, doi: 10.3390/en15124297.
[15] S. Louati, S. Baklouti, B. Samet, Acid based geopolymerization kinetics: Effect of clay particle size, Applied Clay Science, 132‑133, 2016, p. 571‑578, doi: 10.1016/j.clay.2016.08.007.
[16] Geothermal Data Repository (GDR), GDR. Available online: https://gdr.openei.org/, retieved on 15 august 2025.
[17] I. Kurek al., Foamed Eco-Geopolymer Modified by Perlite and Cellulose as a Construction Material for Energy-Efficient Buildings, Energies, 15(12), 2022, p. 4297, doi: 10.3390/en15124297.
[18] A. Gharzouni, L. Vidal, N. Essaidi, E. Joussein, S. Rossignol, Recycling of geopolymer waste: Influence on geopolymer formation and mechanical properties, Materials & Design, 94, 2016, p. 221‑229, doi: 10.1016/j.matdes.2016.01.043.
[19] H. Ye, Y. Zhang, Z. Yu, J. Mu, Effects of cellulose, hemicellulose, and lignin on the morphology and mechanical properties of metakaolin-based geopolymer, Construction and Building Materials, 173, 2018, p. 10‑16, doi: 10.1016/j.conbuildmat.2018.04.028.
[20] C. Wang, O. Kayali, J.-L. Liow, U. Troitzsch, Participation and disturbance of superplasticisers in early-stage reaction of class F fly ash-based geopolymer, Construction and Building Materials, 403, 2023, p. 133176, doi: 10.1016/j.conbuildmat.2023.133176.
[21] N. Siti Syazwani, M. N. Ervina Efzan, C. K. Kok, M. J. Nurhidayatullaili, “Analysis on extracted jute cellulose nanofibers by Fourier transform infrared and X-Ray diffraction”, Journal of Building Engineering, 48, 2022, p. 103744, doi: 10.1016/j.jobe.2021.103744.