EFFECTS OF ALUMINIUM REINFORCEMENT ON THE MECHANICAL AND MORPHOLOGICAL CHARACTERISTICS OF HIGH-DENSITY POLYETHYLENE COMPOSITES
European Journal of Materials Science and Engineering, Volume 10, Issue 1, 2025
PDF Full Article, DOI: 10.36868/ejmse.2025.10.01.037, pp. 37-50
Published: March 20, 2025
A. Nayeem FARUQUI1,*, Md. Jillur RAHMAN1, Md. Mehidi HASAN 1, Md. Rezaul Karim SHEIKH 1
1 Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh
* Corresponding author: nayeemfaruqui@ru.ac.bd
Abstract
Polymer matrix composites (PMC) are prominent structural materials that offer a combination of some extra-ordinary properties, including light weight, high strength, high resistance to chemicals, etc. In this research, the influence of aluminium reinforcement content (5–40 wt%) on the morphological, mechanical, and physical properties (impact strength, tensile strength, elastic modulus, and maximum load-bearing capacity) of Al-high-density polyethylene (HDPE) composites has been studied. We used a customized extruder machine to fabricate the composites, followed by injection molding to prepare test specimens. In comparison to virgin HDPE, the impact strength, flexural strength, elastic modulus, and tensile strength of the composites increased at 5 weight percent of aluminium content and declined with increasing reinforcing quantity. The break point is higher for pure HDPE than composites with any weight of aluminium. Using an optical and scanning electron microscope (SEM), a microstructural study of the composites was carried out to assess the cohesion and distribution of the reinforcement and matrix. Based on the particle loading and uniformity, it was observed that composites with a 5 wt% content of aluminium reinforcement exhibited more efficiency for the enhancement of mechanical properties.
Keywords: Polymer matrix composites (PMC), aluminium, morphological analysis, high-density polyethylene (HDPE), mechanical properties.
References:
- Pukánszky, B., Interfaces and interphases in multicomponent materials: past, present, future, European Polymer Journal, 41(4), 2005, pp. 645-662. doi: 10.1016/j.eurpolymj.2004.10.035.
- Mayer, C., Wang, X., Neitzel, M., Macro-and micro-impregnation phenomena in continuous manufacturing of fabric reinforced thermoplastic composites, Composites Part A: Applied Science and Manufacturing, 29(7), 1998, pp. 783-793. doi:10.1016/S1359-835X(98)00056-6.
- Campbell, F.C., Manufacturing Processes for Advanced Composites (1st Edition), Elsevier Advanced Technology, Oxford, 2003, pp. 25-37.
- Singh, A., Al-Ketan, O., Karathanasopoulos, N., Highly strain-rate sensitive and ductile composite materials combining soft with stiff TPMS polymer-based interpenetrating phases, Composite Structures, 328, 2024, pp. 117646. doi:10.1016/j.compstruct.2023.117646.
- Maiti, S., Islam, M.R., Uddin, M.A., Afroj, S., Eichhorn, S.J., Karim, N., Sustainable fiber-reinforced composites: a review, Advanced Sustainable Systems, 6, 2022, pp. 2200258. doi:10.1002/adsu.202200258.
- Ujah, C.O., Kallon, D.V.V., Trends in aluminium matrix composite development, Crystals, 12(10), 2022, pp. 1357. doi: 10.3390/cryst12101357.
- Kairytė, A., Vaitkus, S., Kremensas, A., Pundienė, I., Członka, S., Strzelec, K., Moisture-mechanical performance improvement of thermal insulating polyurethane using paper production waste particles grafted with different coupling agents, Construction and Building Materials, 208, 2019, pp. 525-534. doi: 10.1016/j.conbuildmat.2019.03.048.
- Chung, S., Im, Y., Kim, H., Park, S., Jeong, H., Evaluation for micro scale structures fabricated using epoxy-aluminum particle composite and its application, Journal of Materials Processing Technology, 160(2), 2005, pp. 168-173. doi: 10.1016/j.jmatprotec.2004.06.004.
- Zhou, W., Yu, D., Effect of coupling agents on the dielectric properties of aluminum particles reinforced epoxy resin composites, Journal of Composite Materials, 45(19), 2011, pp. 1981-1989. doi: 10.1177/0021998310394694.
- Senthilkumar, N., Kalaichelvan, K., Elangovan, K., Mechanical behaviour of aluminum particulate epoxy composite–experimental study and numerical simulation, International Journal of Mechanical and Materials Engineering, 7(3), 2012, pp. 214-221.
- Reddy, T.B., Mechanical performance of green coconut fiber/HDPE composites, International Journal of Engineering Research and Applications, 3(6), 2013, pp. 1262-1270.
- Khanam, P.N., AlMaadeed, M.A.A., Processing and characterization of polyethylene-based composites, Advanced Manufacturing: Polymer & Composites Science, 1(2), 2015, pp. 63-79. doi: 10.1179/2055035915Y.0000000002.
- Wei, X., Vekshin, B., Kraposhin, V., Huang, Y., Shen, J., Xia, K., Full density consolidation of pure aluminium powders by cold hydro-mechanical pressing, Materials Science and Engineering: A, 528(18), 2011, pp. 5784-5789. doi: 10.1016/j.msea.2011.03.099.
- Manikandan, P., Faruqui, A.N., Raghukandan, K., Mori, A., Hokamoto, K., Underwater shock consolidation of Mg–SiC composites, Journal of Materials Science, 45(16), 2010, pp. 4518-4523. doi: 10.1007/s10853-010-4547-8.
- Faruqui, A.N., Manikandan, P., Sato, T., Mitsuno, Y., Hokamoto, K., Mechanical milling and synthesis of Mg-SiC composites using underwater shock consolidation, Metals and Materials International, 18, 2012, pp. 157-163. doi: 10.1007/s12540-012-0019-9.
- Choudhury, A., Isothermal crystallization and mechanical behavior of ionomer treated sisal/HDPE composites, Materials Science and Engineering: A, 491(1-2), 2008, pp. 492-500. doi: 10.1016/j.msea.2008.03.011.
- Crosby, A.J., Lee, J.Y., Polymer nanocomposites: the nano effect on mechanical properties, Polymer Reviews, 47(2), 2007, pp. 217-229. doi: 10.1080/15583720701271278.
- Garcia-Gonzalez, D., Rodriguez-Millan, M., Rusinek, A., Arias, A., Low temperature effect on impact energy absorption capability of PEEK composites, Composite Structures, 134, 2015, pp. 440-449. doi: 10.1016/j.compstruct.2015.08.090.
- Florenzano, F.H., Strelitzki, R., Reed, W.F., Absolute, on-line monitoring of molar mass during polymerization reactions, Macromolecules, 31(21), 1998, pp. 7226-7238. doi: 10.1021/ma980876e.
- Oduola, K., Ozioko, F., Enhancement of high-density polyethylene properties by impregnation with inorganic alumina reinforcement, American Journal of Chemical Engineering, 5(3-1), 2017, pp. 49-54. doi: 10.11648/j.ajche.s.2017050301.16.
- Ulegin, S., Kadykova, Y.A., Artemenko, S., Demidova, S., Basalt-filled epoxy composite materials, International Polymer Science and Technology, 41(5), 2014, pp. 57-60. doi: 10.1177/0307174X1404100513.
- Burmistrov, I., Mostovoi, A., Shatrova, N., Panova, L., Kuznetsov, D., Gorokhovskii, A., Il’inykh, I.A., Influence of surface modification of potassium polytitanates on the mechanical properties of polymer composites thereof, Russian Journal of Applied Chemistry, 86, 2013, pp. 765-771. doi: 10.1134/S107042721305025X.
- Bredikhin, P., Kadykova, Y.A., Waste stone wool as an effective reinforcement for polyethylene, International Polymer Science and Technology, 44(9), 2017, 41-44. doi: 10.1177/0307174X1704400908.
- Akıncı, A., Yılmaz, Ş., Assignment of mechanical properties of basalt-LDPE composite materials using experimental and computer aided simulation methods, Scientific Research and Essays, 6(11), 2011, pp. 2315-2324. doi: 10.5897/SRE10.1106.
- Agarwal, B.D., Broutman, L.J., Chandrashekhara, K., Analysis and Performance of Fiber Composites (third edition), John Wiley & Sons Inc., New Delhi, 2017, pp. 5-10.
- Tham, L.M., Gupta, M., Cheng, L., Effect of limited matrix-reinforcement interfacial reaction on enhancing the mechanical properties of aluminium–silicon carbide composites, Acta Materialia, 49(16), 2001, pp. 3243-3253. doi: 10.1016/S1359-6454(01)00221-X.